Using ACES Look Modification Transforms (LMTs) in VFX Environments – Part 2: Gamut Mapping

2021 ◽  
Vol 2021 (3) ◽  
pp. 108-1-108-14
Author(s):  
Eberhard Hasche ◽  
Oliver Karaschewski ◽  
Reiner Creutzburg

In modern moving image production pipelines, it is unavoidable to move the footage through different color spaces. Unfortunately, these color spaces exhibit color gamuts of various sizes. The most common problem is converting the cameras’ widegamut color spaces to the smaller gamuts of the display devices (cinema projector, broadcast monitor, computer display). So it is necessary to scale down the scene-referred footage to the gamut of the display using tone mapping functions [34].In a cinema production pipeline, ACES is widely used as the predominant color system. The all-color compassing ACES AP0 primaries are defined inside the system in a general way. However, when implementing visual effects and performing a color grade, the more usable ACES AP1 primaries are in use. When recording highly saturated bright colors, color values are often outside the target color space. This results in negative color values, which are hard to address inside a color pipeline. "Users of ACES are experiencing problems with clipping of colors and the resulting artifacts (loss of texture, intensification of color fringes). This clipping occurs at two stages in the pipeline: <list list-type="simple"> <list-item>- Conversion from camera raw RGB or from the manufacturer’s encoding space into ACES AP0</list-item> <list-item>- Conversion from ACES AP0 into the working color space ACES AP1" [1]</list-item> </list>The ACES community established a Gamut Mapping Virtual Working Group (VWG) to address these problems. The group’s scope is to propose a suitable gamut mapping/compression algorithm. This algorithm should perform well with wide-gamut, high dynamic range, scene-referred content. Furthermore, it should also be robust and invertible. This paper tests the behavior of the published GamutCompressor when applied to in- and out-ofgamut imagery and provides suggestions for application implementation. The tests are executed in The Foundry’s Nuke [2].

2014 ◽  
Author(s):  
Jens Preiss ◽  
Mark D. Fairchild ◽  
James A. Ferwerda ◽  
Philipp Urban

2020 ◽  
Vol 2020 (28) ◽  
pp. 1-6
Author(s):  
Rafał K. Mantiuk ◽  
Minjung Kim ◽  
Maliha Ashraf ◽  
Qiang Xu ◽  
M. Ronnier Luo ◽  
...  

We model color contrast sensitivity for Gabor patches as a function of spatial frequency, luminance and chromacity of the background, modulation direction in the color space and stimulus size. To fit the model parameters, we combine the data from five independent datasets, which let us make predictions for background luminance levels between 0.0002 cd/m2 and 10 000 cd/m2, and for spatial frequencies between 0.06 cpd and 32 cpd. The data are well-explained by two models: a model that encodes cone contrast and a model that encodes postreceptoral, opponent-color contrast. Our intention is to create practical models, which can well explain the detection performance for natural viewing in a wide range of conditions. As our models are fitted to the data spanning very large range of luminance, they can find applications in modeling visual performance for high dynamic range and augmented reality displays.


2014 ◽  
Author(s):  
Jiancheng Zhang ◽  
Xiaohua Liu ◽  
Liquan Dong ◽  
Yuejin Zhao ◽  
Ming Liu

2020 ◽  
Vol 2020 (9) ◽  
pp. 214-1-214-9
Author(s):  
Anustup Choudhury ◽  
Scott Daly

There are an increasing number of databases describing subjective quality responses for HDR (high dynamic range) imagery with various distortions. The dominant distortions across the databases are those that arise from video compression, which are primarily perceived as achromatic, but there are some chromatic distortions due to 422 and other chromatic sub-sampling. Tone mapping from the source HDR levels to various levels of reduced capability SDR (standard dynamic range) are also included in these databases. While most of these distortions are achromatic, tone-mapping can cause changes in saturation and hue angle when saturated colors are in the upper hull of the of the color space. In addition, there is one database that specifically looked at color distortions in an HDR-WCG (wide color gamut) space. From these databases we can test the improvements to well-known quality metrics if they are applied in the newly developed color perceptual spaces (i.e., representations) specifically designed for HDR and WCG. We present results from testing these subjective quality databases to computed quality using the new color spaces of Jzazbz and ICTCP, as well as the commonly used SDR color space of CIELAB.


2017 ◽  
Vol 25 (13) ◽  
pp. 15131 ◽  
Author(s):  
Muhammad Safdar ◽  
Guihua Cui ◽  
Youn Jin Kim ◽  
Ming Ronnier Luo

Author(s):  
Chang Su ◽  
Li Tao ◽  
Yeong Taeg Kim

Abstract As high-dynamic range (HDR) and wide-color gamut (WCG) contents become more and more popular in multimedia markets, color mapping of the distributed contents to different rendering devices plays a pivotal role in HDR distribution eco-systems. The widely used and economic gamut-clipping (GC)-based techniques perform poorly in mapping WCG contents to narrow gamut devices; and high-performance color-appearance model (CAM)-based techniques are computationally expensive to commercial applications. In this paper, we propose a novel color gamut mapping (CGM) algorithm to solve the problem. By introducing a color transition/protection zone (TPZ) and a set of perceptual hue fidelity constraints into the CIE-1931 space, the proposed algorithm directly carries out CGM in the perceptually non-uniform space, thus greatly decreases the computational complexity. The proposed TPZ effectively achieves a reasonable compromise between saturation preserving and details protection in out-of-gamut colors. The proposed hue fidelity constraints reference the measurements of human subjects' visual responses, thus effectively preserve the perceptual hue of the original colors. Experimental results show that the proposed algorithm clearly outperforms the GC-CGM, and performs similarly or better than the expensive CAM-CGM. The proposed algorithm is real-time and hardware friendly. It is an important supplement of the SMPTE ST.2094-40 standard.


2019 ◽  
Vol 5 (1) ◽  
pp. 18 ◽  
Author(s):  
Maxime Rousselot ◽  
Olivier Meur ◽  
Rémi Cozot ◽  
Xavier Ducloux

High Dynamic Range (HDR) and Wide Color Gamut (WCG) screens are able to render brighter and darker pixels with more vivid colors than ever. To assess the quality of images and videos displayed on these screens, new quality assessment metrics adapted to this new content are required. Because most SDR metrics assume that the representation of images is perceptually uniform, we study the impact of three uniform color spaces developed specifically for HDR and WCG images, namely, I C t C p , J z a z b z and H D R - L a b on 12 SDR quality assessment metrics. Moreover, as the existing databases of images annotated with subjective scores are using a standard gamut, two new HDR databases using WCG are proposed. Results show that MS-SSIM and FSIM are among the most reliable metrics. This study also highlights the fact that the diffuse white of HDR images plays an important role when adapting SDR metrics for HDR content. Moreover, the adapted SDR metrics does not perform well to predict the impact of chrominance distortions.


Sign in / Sign up

Export Citation Format

Share Document