scholarly journals Improving the Aesthetics and Performance of Perovskite Materials for Photovoltaics

2021 ◽  
Author(s):  
◽  
Tamara D. McFarlane

Within the last decade, lead halide perovskite solar cells have rapidly evolved to the cusp of commercialisation. Current record device efficiencies have surpassed 25% however; a principal limitation of these materials is their instability on exposure to ambient conditions. Methylammonium lead tri-bromide (MAPbBr3) perovskite has shown superior stability over other lead halide perovskite materials, yet the efficiencies of MAPbBr3 devices are significantly lower with a record efficiency of 10.4%. This research investigates the treatment of MAPbBr3 perovskite solar cells with organic dyes of complementary absorbance in a bid to maximise the light harvesting, increase the photocurrent and improve the device efficiency. Initial investigations focused on developing an optimised build method capable of manufacturing MAPbBr3 devices which consistently achieve above 1% efficiency. The optical characterisation of six organic dyes revealed a red indoline dye, D205 and a blue squaraine, SQ2 (which both absorb strongly between 300-700 nm) would offer the best complementary absorbance to MAPbBr3 perovskite. On adding the dyes, the perovskite layer underwent an evident colour change highlighting the potential for coloured perovskite cells which could be beneficial for building-integrated applications. MAPbBr3 cells co-sensitised using a novel method (which sensitises the film after perovskite crystallisation) show improved efficiency (2.6% SQ2, 3.1% D205) over perovskite-only devices (2%) with a 10% photocurrent contribution from the dye. Whilst increases in the photocurrent are observed with co-sensitisation, increased device efficiencies are mainly derived from improvements in the fill factor. We also see lower series resistance and increased photoluminescence lifetime with co-sensitisation where control and co-sensitised MAPbBr3 thin-films produce average lifetimes of 0.44 ns and 0.80 ns, respectively. Further investigation has revealed the dye solvent, toluene, and the dye both help to improve device performance acting as both a treatment and a second sensitiser in the device by passivating defects and lowering recombination losses whilst providing additional photocurrent through increased absorbance. As a result, co-sensitised devices show slower recombination kinetics resulting in increased open-circuit voltage under lower light levels. These effects have proven beneficial for thicker co-sensitised devices (>0.7 µm) where they have often translated into large increases in device efficiency. In future, this may be beneficial for indoor or lower light level PV systems including within the rapidly expanding internet of things market.

Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 667 ◽  
Author(s):  
Edson Meyer ◽  
Dorcas Mutukwa ◽  
Nyengerai Zingwe ◽  
Raymond Taziwa

Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.


Author(s):  
Mohd Quasim Khan ◽  
Khursheed Ahmad

In the last few decades, the energy demand has been increased dramatically. Different forms of energy have utilized to fulfill the energy requirements. Solar energy has been proven an effective and highly efficient energy source which has the potential to fulfill the energy requirements in the future. Previously, various kind of solar cells have been developed. In 2013, organic–inorganic metal halide perovskite materials have emerged as a rising star in the field of photovoltaics. The methyl ammonium lead halide perovskite structures were employed as visible light sensitizer for the development of highly efficient perovskite solar cells (PSCs). In 2018, the highest power conversion efficiency of 23.7% was achieved for methyl ammonium lead halide based PSCs. This obtained highest power conversion efficiency makes them superior over other solar cells. The PSCs can be employed for practical uses, if their long term stability improved by utilizing some novel strategies. In this chapter, we have discussed the optoelectronic properties of the perovskite materials, construction of PSCs and recent advances in the electron transport layers for the fabrication of PSCs.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


Author(s):  
Laura E. Mundt ◽  
Erin L. Ratcliff ◽  
Jinhui Tong ◽  
Axel Palmstrom ◽  
Kai Zhu ◽  
...  

Materials ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 837 ◽  
Author(s):  
Haifeng Yang ◽  
Jincheng Zhang ◽  
Chunfu Zhang ◽  
Jingjing Chang ◽  
Zhenhua Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document