scholarly journals Formulasi dan Karakterisasi Sediaan Nanoemulgel Serbuk Lidah Buaya (Aloe Vera L.)

2019 ◽  
Vol 16 (1) ◽  
pp. 28-37
Author(s):  
Teguh Imanto ◽  
Roseh Prasetiawan ◽  
Erindyah Retno Wikantyasning

Aloe vera L. contains antiseptic saponins and anthraquinone complexes as antibacterial. This research was conducted to formulate aloe vera powder into nanoemulgel, characterize and test its physical properties, and to know the effect of gelling agent concentration (carbopol and chitosan) on nanoemulgel. Emulsion type used is oil in water (O / W) with surfactant tween 80 and co-surfactant propylene glycol. Nanoemulsion is characterized by percent of transmittance with UV-Vis spectrophotometer, also potential droplet and zeta size distribution with Particle Size Analyzer. Hydrogels consist of 4 combination formulas of carbopol 0.5%; 1%; 1.5%; 2% and 0.3% chitosan. The formula is tested for physical properties including organoleptic, pH, spreadability, adhesion, viscosity and stability with freeze thaw method. The results showed that the nanoemulsion droplet size was 65.05nm ± 13.49 with zeta potential of -0.1mV and the percent of transmittance above 98%. The result of physical properties of the four formulas shows that the different gelling agent concentration gives different physical properties of viscosity and spreadability. Overall, formula 3 has the best physical properties and physical stability compared to formula 1, 2 and 4.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
C. Arancibia ◽  
R. Navarro-Lisboa ◽  
R. N. Zúñiga ◽  
S. Matiacevich

Carboxymethyl cellulose (CMC) is a hydrocolloid with surface activity that could act as emulsifiers in oil-in-water emulsions; however the principal role is that it acts as structuring, thickening, or gelling agent in the aqueous phase. This study aims to evaluate the application of CMC as thickener into nanoemulsions based on olive oil and their influence on particle characteristics, flow behavior, and color. Four nanoemulsions with different oil (5% and 15% w/w olive oil) and CMC (0.5% and 0.75% w/w) concentration and two control samples without CMC added were prepared using Tween 80 as emulsifier. All physical properties studied on nanoemulsions were depending on both oil and CMC concentration. In general, z-average particle size varied among 107–121 nm and those samples with 5% oil and CMC were the most polydisperse. The addition of CMC increased anionic charge of nanoemulsions obtaining zeta potential values among −41 and −55 mV. The oil concentration increased both consistency and pseudoplasticity of samples, although samples were more stable to gravitational separation at the highest CMC concentration. Color of nanoemulsions was affected principally by the oil concentration. Finally, the results showed that CMC could be applied in nanoemulsions as thickener increasing their physical stability although modifying their physical properties.


Author(s):  
ASHWINI JADHAV ◽  
BINOY VARGHESE CHERIYAN

Objective: The main aim of this study to formulate a nifedipine-loaded nanocarrier for improving solubility and bioavailability. Methods: To improve the solubility of drug, nifedipine-loaded nanocarrier (lipotomes) were prepared by using the film lipid hydration technique. lipotomes were prepared by using tween 80, which is used for increasing solubility and cetyl alcohol for lipophilic environment. Drug excipients interaction determined by FTIR. lipotomes were characterized for particle size, Entrapment efficiency and zeta potential. lipotomes were optimized by using Design-Expert 12 software. Optimized formula further lyophilized by using different cyroproyectant to improve the stability and oral administration of the drug. Results: FTIR shows there was no interaction between formulation ingredients. Mean particle size, entrapment efficiency, zeta potential was determined and found to be 308.1 nm, 96.7%, 20.1mV, respectively. Surface morphology of lipotomes was observed by a scanning electron microscope (SEM). Optimized lipotomes was lyophilized with Mannitol (8% w/v) was the ideal cryoprotectant to retain the physicochemical characteristics of the OLT formulation after lyophilization. Conclusion: Nifedipine loaded nanocarrier was successfully prepared, using film hydration method. Which have good particle size, EE% and zeta potential. After lyophilization no significant changes was observed in particle size with good physical stability, so it could be a good choice for conventional drug delivery system by doing further investigation as in vitro and in vivo study


2017 ◽  
Vol 9 ◽  
pp. 124
Author(s):  
Amelia Luthfiah ◽  
Erny Sagita ◽  
Iskandarsyah Iskandarsyah

Objectives: While p-synephrine exhibits lipolytic activity, it also has a low oral bioavailability as well as hydrophilic characteristic, so it is difficult forit to penetrate the epidermis if it is made into transdermal preparation. The purpose of this research was to increase the penetration of p-synephrineby preparing it as transfersome gel.Materials and Methods: Three transfersome formulas were prepared—F1, F2, and F3—with the surfactants used at Tween 80, Span 80, and thecombination of Tween 80 and Span 80 with a ratio of 1:1, respectively.Results: The results showed that F1 was the best formula, with the highest entrapment efficiency, of 64.058±0.754%, a particle size average of103.3 nm, polydispersity index 0.269±0.05, and zeta potential of −36.2±0.64 mV, so this formula was employed for the gel formulation. Two gelformulas were then prepared, transfersome gel (GT) and non transfersome gel (GNT).Conclusions: The two gels were evaluated for their physical stability, and GT was found to be more stable than GNT.


2018 ◽  
Vol 273 ◽  
pp. 122-127
Author(s):  
Wen Ni Tan ◽  
Che Rose Laili ◽  
Suhaimi Hamdan

In this work, liquid crystal emulsion with aloe vera (AV) was formulated and characterised its physical properties. A direct titration method was used to determine the composition of liquid crystal emulsion in a system consisting of water/mixed Tween 80: Span 85/hexane. AV gel was added to produce AV liquid crystal emulsion (AVLCE), which was then subjected to various characterisation such as microscopic analysis, stability test, rheological test and particle size analysis. Results showed that the application of AVCLE employed better performances in terms of stability, particle size and moisturizing. This study suggest that the formulated AVLCE may be suitable to be used as topical application on wounded skin.


2021 ◽  
Vol 10 (1) ◽  
pp. 208-218
Author(s):  
Fatemeh Ghavidel ◽  
Afshin Javadi ◽  
Navideh Anarjan ◽  
Hoda Jafarizadeh-Malmiri

Abstract Subcritical water was used to provide propolis oil in water (O/W) nanoemulsions. To monitor and detect the main bioactive compounds of the prepared propolis extract, gas chromatography demonstrated that there were 47 bioactive materials in the propolis extract, among which pinostrobin chalcone and pinocembrin were the two key components. Effectiveness of two processing parameters such as the amount of saponin (0.5–2.0 g) and propolis extract (0.1–0.6 g), on particle size, polydispersity index (PDI), zeta potential, and antioxidant activity of the provided nanoemulsions, was evaluated. Results demonstrated that more desirable propolis O/W nanoemulsion, with minimum particle size (144.06 nm) and PDI (0.286), and maximum zeta potential (−21.71 mV) and antioxidant activity (90.86%) were made using 0.50 g of saponin and 0.53 g of propolis extract. Further analysis revealed that the prepared nanoemulsion based on optimum processing conditions had spherical shaped propolis nanodroplets in the colloidal solution with turbidity and maximum broad absorption peak of 0.08 a.u. and 292 nm, respectively. The prepared nanoemulsion had high antibacterial activity against both selected bacteria strains namely, Staphylococcus aureus and Escherichia coli.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1400
Author(s):  
Chenshan Shi ◽  
Miaomiao Liu ◽  
Qinghua Ma ◽  
Tiantian Zhao ◽  
Lisong Liang ◽  
...  

This study investigates the antioxidant behaviors of a hazelnut tetrapeptide, FSEY (Phe-Ser-Glu-Tyr), in an oil-in-water emulsion. The emulsion was prepared with stripped hazelnut oil at a ratio of 10%. O/W emulsions, both with and without antioxidants (FSEY and TBHQ), were incubated at 37 °C. The chemical stabilities, including those of free radicals and primary and secondary oxidation productions, along with the physical stabilities, which include particle size, zeta-potential, color, pH, and ΔBS, were analyzed. Consequently, FSEY displayed excellent antioxidant behaviors in the test system by scavenging free lipid radicals. Both primary and secondary oxidation products were significantly lower in the FSEY groups. Furthermore, FSEY assisted in stabilizing the physical structure of the emulsion. This antioxidant could inhibit the increase in particle size, prevent the formation of creaming, and stabilize the original color and pH of the emulsion. Consequently, FSEY may be an effective antioxidant additive to use in emulsion systems.


Author(s):  
ARVIND GANNIMITTA ◽  
PRATHIMA SRINIVAS ◽  
VENKATESHWAR REDDY A ◽  
PEDIREDDI SOBHITA RANI

Objective: The main objective of this study was to prepare and evaluate the nanocrystal formulation of docetaxel. Methods: Docetaxel nanocrystals were formulated to improve the water solubility. Docetaxel nanocrystals were prepared by nanoprecipitation method using Tween 80, egg lecithin, and povidone C-12 as stabilizers and poly(lactic-co-glycolic acid) (PLGA) as polymer in acceptable limits. A total of 16 formulations were prepared by changing stabilizer and polymer ratios. The prepared nanocrystals were characterized by particle size, zeta potential, crystalline structure, surface morphology, assay, saturation solubility, and in vitro drug release. Results: Based on particle size, polydispersity index, and zeta potential data, four formulations were optimized. The formulation containing Tween 80 as stabilizer has shown lowest particle size and better drug release than the formulations containing egg lecithin and povidone C-12 as stabilizers. The formulation containing Tween 80 and PLGA has shown still lower sized particles than the Tween 80 alone and exhibited prolonged sustained drug release. The release kinetics of formulations containing Tween 80 and PLGA followed zero-order release kinetics and formulations containing egg lecithin and povidone C-12 followed Higuchi diffusion (non-Fickian). Conclusion: From the study, we concluded that as the type and concentration of stabilizer changed the size and shape of the crystals were also changed and the formulations showed sustained drug release with non-Fickian diffusion.


2012 ◽  
Vol 554-556 ◽  
pp. 1738-1741 ◽  
Author(s):  
Zhi Yue Xia ◽  
Yi Ming Ding ◽  
Jian Ming Ouyang

The differences between the urinary crystallites from patients with renal calculi and healthy subjects were compared using SEM, XRD, and nano-particle size analyzer, etc. These differences concern morphology, aggregation state, number, particle size, crystal phase and Zeta potential, etc. About 90% of the crystallites had the particle sizes less than 20 μm, the Zeta potential was -(113) mV, and the composition included a large proportion of calcium oxalate dihydrate (COD) crystals. By comparison, the urinary crystallites from patients with renal calculi had sharp edges and corners and exhibited significant aggregation. There were more crystallites with the size greater than 20 μm in comparison with those in healthy subjects, their Zeta potential was -(73) mV, and calcium oxalate existed mainly in the form of calcium oxalate monohydrate (COM) crystals. The above differences increased the aggregation trend of the crystallites in lithogenic urine and caused the probability of renal calculi formation to increase.


2019 ◽  
Vol 8 (1) ◽  
pp. 629-634 ◽  
Author(s):  
Amir Rahimirad ◽  
Afshin Javadi ◽  
Hamid Mirzaei ◽  
Navideh Anarjan ◽  
Hoda Jafarizadeh-Malmiri

Abstract Silver nanoparticles (Ag NPs) were synthesized using four pathogenic bacterial extracts namely, Bacillus cereus, E. coli, Staphylococcus aureus and Salmonella entericasubsp.enterica. Synthesis process were hydrothermally accelerated using temperature, pressure and heating time of 121°C, 1.5 bar ad 15 min. Physico- chemical characteristics of the fabricated Ag NPs, including, particle size, polydispersity index (PDI), zeta potential, broad emission peak (λmax) and concentration were evaluated using UV-Vis spectrophotometer and dynamic light scattering (DLS) particle size analyzer. Furthermore, main existed functional groups in the provided bacterial extracts were recognized using Fourier transform infrared spectroscopy. The obtained results revealed that two main peaks were detected around 3453 and 1636.5 cm-1, for all bacterial extracts, were interrelated to the stretching vibrations of hydroxyl and amide groups which those had key roles in the reduction of ions and stabilizing of the formed Ag NPs. The results also indicated that, Ag NPs with much desirable characteristics, including minimum particle size (25.62 nm) and PDI (0.381), and maximum zeta potential (-29.5 mV) were synthesized using S. e. subsp. enterica extract. λmax, absorbance and concentration values for the fabricated Ag NPs with this bacterial extract were 400 nm, 0.202% a.u. and 5.87 ppm.


Author(s):  
MUHAMAD WILDAN NUGRAHA ◽  
RADITYA ISWANDANA ◽  
MAHDI JUFRI

Objective: Tween 80 has been used as a solvent for the extraction of phenolic compounds because this surfactant has both hydrophilic and hydrophobicproperties. Solid lipid nanoparticles (SLNs) have been developed to improve penetration through the skin layer. We investigated the efficacy of usingthe microwave-assisted micellar extraction (MAME) approach for extracting oxyresveratrol from Morus alba roots and also to develop an SLN lotion.Methods: The M. alba roots were extracted with Tween 80 in a microwave for 18 min, and the extract was used to develop SLN with differentconcentrations of glyceryl monostearate. The SLNs from M. alba root extracts were prepared by a high-speed homogenization technique (25,000 rpmfor 15 min). The SLNs produced were characterized as per particle size, polydispersity index (PDI), and zeta potential. The SLNs with the bestcharacteristics were used to formulate a lotion using a high-pressure homogenizer.Results: Extraction using MAME showed improved extraction efficiency. The oxyresveratrol concentration from the extract was 2.77%. The SLN with2.5% glyceryl monostearate showed the optimum result, with a particle size of 130.20 nm, a PDI of 0.278, and a zeta potential of −21.8 mV. The SLNlotion exhibited a particle size of 285.9 nm and a PDI of 0.360. The SLN lotion also had good penetration, with a flux of 4.70 μg cm−2/h.Conclusion: MAME is an efficient method for extracting oxyresveratrol from M. alba roots. The SLN with 2.5% glyceryl monostearate exhibited theoptimum characteristics, and the SLN lotion showed good characteristics, including skin penetration.


Sign in / Sign up

Export Citation Format

Share Document