Edge Computing and Networking Resource Management for Decomposable Deep Learning: An Auction-Based Approach

Author(s):  
Ya-Ting Yang ◽  
Hung-Yu Wei
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Chit Wutyee Zaw ◽  
Shashi Raj Pandey ◽  
Kitae Kim ◽  
Choong Seon Hong

2021 ◽  
pp. 1-12
Author(s):  
Ermioni Qafzezi ◽  
Kevin Bylykbashi ◽  
Phudit Ampririt ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
...  

Vehicular Ad hoc Networks (VANETs) aim to improve the efficiency and safety of transportation systems by enabling communication between vehicles and roadside units, without relying on a central infrastructure. However, since there is a tremendous amount of data and significant number of resources to be dealt with, data and resource management become their major issues. Cloud, Fog and Edge computing, together with Software Defined Networking (SDN) are anticipated to provide flexibility, scalability and intelligence in VANETs while leveraging distributed processing environment. In this paper, we consider this architecture and implement and compare two Fuzzy-based Systems for Assessment of Neighboring Vehicles Processing Capability (FS-ANVPC1 and FS-ANVPC2) to determine the processing capability of neighboring vehicles in Software Defined Vehicular Ad hoc Networks (SDN-VANETs). The computational, networking and storage resources of vehicles comprise the Edge Computing resources in a layered Cloud-Fog-Edge architecture. A vehicle which needs additional resources to complete certain tasks and process various data can use the resources of the neighboring vehicles if the requirements to realize such operations are fulfilled. The proposed systems are used to assess the processing capability of each neighboring vehicle and based on the final value, it can be determined whether the edge layer can be used by the vehicles in need. FS-ANVPC1 takes into consideration the available resources of the neighboring vehicles and the predicted contact duration between them and the present vehicle, while FS-ANVPC2 includes in addition the vehicles trustworthiness value. Our systems take also into account the neighboring vehicles’ willingness to share their resources and determine the processing capability for each neighbor. We evaluate the proposed systems by computer simulations. The evaluation results show that FS-ANVPC1 decides that helpful neighboring vehicles are the ones that are predicted to be within the vehicle communication range for a while and have medium/large amount of available resources. FS-ANVPC2 considers the same neighboring vehicles as helpful neighbors only if they have at least a moderate trustworthiness value ( VT = 0.5). When VT is higher, FS-ANVPC2 takes into consideration also neighbors with less available resources.


Sign in / Sign up

Export Citation Format

Share Document