Optimal tracking controller design for non-linear non minimum-phase systems

Author(s):  
Martin Sackmann ◽  
Eberhard Munz ◽  
Volker Krebs
Author(s):  
Bo Xie ◽  
Bin Yao

The paper presents a new tracking control approach for a class of non-minimum phase linear systems. The proposed approach consists of two parts: trajectory planning and tracking controller design. The trajectory planning is solved as an optimization problem to improve the achievable transient performance under the fundamental constraints associated with perfect tracking of non-minimum phase systems. The recently proposed adaptive robust tracking controller for a class of non-minimum phase systems is then applied to guarantee that the tracking error dynamics can be stabilized with bounded internal states. The effectiveness of the proposed approach is illustrated through simulation on tracking control of a second order non-minimum phase linear system. Further works are underway to extend the proposed control strategy and trajectory design to a class of non-minimum phase nonlinear systems.


Author(s):  
Rohan Lakhani ◽  
C. R. Srinivasan ◽  
Srividya R

<span>In this paper the phenomenon of inverse response from systems was investigated and its transient response thoroughly analyzed. Inverse response is shown by non-minimum phase systems and some minimum phase systems. Transient analysis of these systems is lacking in literature A case study was done for a non-linear, non-minimum phase CSTR (Continuous Stirred Tank Reactor), which was identified and a novel optimized trajectory for temperature feed was synthesized, which is a non-linear dynamic constrained optimization problem solved using ACADO for a particular chemical reaction. Different control schemes were also implemented on other systems as well, which exibhit inverse responses, including model reference adaptive control. The finding shows that PID-ZN goes with the inverse response, is unable to suppress it and requires large control effort which can have serious hardware limitations. Robustness is another area where PID is lacking with these systems. MRAC shemes were able to overcome all these issues. For CSTR also, these findings hold true thus points at using advance stratigies in process control industries for maximzing product yield.</span>


Sign in / Sign up

Export Citation Format

Share Document