Reliability Assessment of WLCSP using Energy Based Model with Inelastic Strain Energy Density

Author(s):  
Y. C. Lee ◽  
K. N. Chiang
Author(s):  
Chia-Lung Chang ◽  
Tzu-Jen Lin ◽  
Chih-Hao Lai

Nonlinear finite element analysis was performed to predict the thermal fatigue for leadless solder joint of TFBGA Package under accelerated TCT (Temperature Cycling Test). The solder joint was subjected to the inelastic strain that was generated during TCT due to the thermal expansion mismatch between the package and PCB. The solder was modeled with elastic-plastic-creep property to simulate the inelastic deformation under TCT. The creep strain rate of solder was described by double power law. The furthest solder away from the package center induced the highest strain during TCT was considered as the critical solder ball to be most likely damaged. The effects of solder meshing on the damage parameters of inelastic strain range, accumulated creep strain and creep strain energy density were compared to assure the accuracy of the simulation. The life prediction equation based on the accumulated creep strain and creep strain energy density proposed by Syed was used to predict the thermal fatigue life in this study. The agreement between the prediction life and experimental mean life is within 25 per cent. The effect of die thickness and material properties of substrate on the life of solder was also discussed.


Author(s):  
Tomoya Fumikura ◽  
Mitsuaki Kato ◽  
Takahiro Omori

Abstract In recent years, a fatigue life law based on inelastic strain energy density as proposed by Morrow has been applied to solder materials. In this study, the effectiveness of the fatigue life law based on inelastic strain energy density was compared with the conventional law based on inelastic strain range. First, the fatigue properties of Sn-Ag-Cu solder alloy were investigated by a torsional fatigue test with strain control. It was found that the stress–strain hysteresis loop arising from inelastic deformation occurred even under a low strain load with a fatigue life of about 1 million cycles. Therefore, as an extension of the low-cycle fatigue test, evaluation was performed using inelastic strain range and inelastic strain energy density. Experimental results show that when fatigue life was evaluated using inelastic strain energy density, a single power law was found over a wide range from the low-cycle region to the high-cycle region, and the validity of the fatigue life law based on inelastic strain energy density was confirmed. Next, a simple prediction method for the fatigue life law based on inelastic strain energy density was examined, taking the physical background into account. Two material constants of the fatigue life law based on the inelastic strain energy density were estimated from the stress–strain curve for a monotonic load and shown to be close to the actual fatigue test results.


2020 ◽  
Vol 28 ◽  
pp. 734-742
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Liviu Marsavina ◽  
Filippo Berto

2021 ◽  
Vol 230 ◽  
pp. 111716
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Majid Reza Ayatollahi ◽  
Liviu Marsavina ◽  
Filippo Berto

Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


Sign in / Sign up

Export Citation Format

Share Document