scholarly journals Determination of Shear Strength Parameters of Rock Mass using Back Analysis Methods and Comparison of Results with Empirical Methods

2017 ◽  
Vol 2 (11) ◽  
pp. 35
Author(s):  
Ehsan Bakhtiyari ◽  
Ali Almasi ◽  
Akbar Cheshomi ◽  
Jafar Hassanpour

In this study, using the collected data from 4 slope failures in one of the central mines of Iran, the shear strength parameters of jointed and crushed rock masses using back analysis method are calculated and its results are compared with the values obtained from the empirical methods.  In this regard, firstly, the identification of failures is investigated and then geometrical and geological engineering parameters of slopes are collected and recorded by field survey. At this stage, using the Hoek-Brown criterion, shear strength parameters of the rock mass are estimated. Then, using appropriate software for slope stability analysis (limit equilibrium method software: SLIDE and numerical method software: FLAC), and assuming that safety factor is one, the shear strength parameters for sliding surfaces are determined. Finally, the results obtained from this analysis are compared with the results of the empirical methods and then suggestions are made to modify the input data of empirical method

2019 ◽  
Vol 4 (2) ◽  
pp. 92
Author(s):  
Wahyu Wilopo ◽  
Adam Raka Ekasara ◽  
Hendy Setiawan ◽  
Dwikorita Karnawati

On 22 February 2018 landslide occurred in Pasir Panjang Village, Salem District, Brebes Regency of Central Java Province, Indonesia. About 8 people were died, 4 people were injured and several infrastructures were damaged due to this landslide. This research is carried out to understand geological-geotechnical condition and to study the initiation mechanism of the landslide. Field investigation and UAV mapping are carried out to detect slip surface and define slope geometry. The rainfall-induced pore-water pressure is estimated by using the Slope Infiltration Distributed Equilibrium (SLIDE) model. Then, limit equilibrium method is used to estimate the safety factor of the slope, while the shear strength parameters are determined by applying back analysis approach that compared with data from laboratory tests. The results show that landslide occurred in permeable layer of silty sand overlaid above impermeable andesitic breccia. Results from back analysis indicate that the shear strength parameters and rainfall intensity are strongly influence the stability of slope against landslide.


2011 ◽  
Vol 255-260 ◽  
pp. 3482-3487 ◽  
Author(s):  
Le Hua Wang ◽  
Jian Lin Li ◽  
Shan Shan Yang ◽  
Zhuang Cheng ◽  
Min Zhu

Proper mechanical parameters of slope rock mass are the premise which ensures the smooth progress of slope stability calculation. By analyzing the geological information of the yinshuigou accumulation slope on ridge 2 in Xiaowan hydropower station, and according to the deformation and damage in the excavation of the accumulation slope, this paper inverts the shear strength parameters of the accumulation slope by using 2D rigid limit equilibrium method. On base of unloading rock mass mechanics methods, the stress and strain analysis to the accumulation slope is studied by using 3D finite difference method, and by contrast of the monitoring displacement and calculated displacement in slope-direction about the key point of the accumulation slope , the article inverts the deformation parameters of the accumulation slope. Finally, the shear strength parameters in the contact zone are ascertained as: C=0.04MPa, Φ=30°, and the deformation parameter of the accumulation slope is changed from the initial 1.5MPa to 0.95MPa by the damage unloading.


Géotechnique ◽  
2001 ◽  
Vol 51 (4) ◽  
pp. 373-374 ◽  
Author(s):  
L. D. Wesley ◽  
V. Leelaratnam

1985 ◽  
Vol 22 (2) ◽  
pp. 195-204 ◽  
Author(s):  
E. Karl Sauer ◽  
E. A. Christiansen

Little information is available about typical shear strength parameters of tills in southern Saskatchewan even though till is the most common earth material used for construction in this region. The Warman landslide in the South Saskatchewan River Valley provides some insight into the shear strength characteristics of a till, and the results are compared with laboratory tests. The till is from the Upper till of the Sutherland Group, which has a high clay content relative to the underlying and overlying tills. A back analysis of the landslide produced [Formula: see text]′ = 27° assuming c′ = 0. Comparison with laboratory test data and results from a similar landslide near Lebret, Saskatchewan, suggests that [Formula: see text]′ = 22.5° with c′ = 7 kPa may be appropriate "residual" shear strength parameters. A rising water table appears to have been the main contributing factor to instability between 1969 and 1984. There is a possibility, however, that at the 1:50 return interval for flood levels on the river, erosion at the toe of the landslide debris may be a significant factor. Numerous slump scars in the form of small amphitheatres, presently inactive, can be observed in the aerial photographs of the adjacent area. These failures likely occurred intermittently, depending on fluctuating water table and river flood levels. Key words: landslide, till, correlation, stratigraphy, back analysis, shear strength, residual, aerial photographs.


2016 ◽  
Vol 10 (3) ◽  
pp. 257-267 ◽  
Author(s):  
Ling Wan ◽  
Zuoan Wei ◽  
Jiayi Shen

Sign in / Sign up

Export Citation Format

Share Document