GESTURE RECOGNITION SYSTEM FOR NIGERIAN TRIBAL GREETING POSTURES USING SUPPORT VECTOR MACHINE

2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.

2020 ◽  
pp. 002029402096482
Author(s):  
Sulaiman Khan ◽  
Abdul Hafeez ◽  
Hazrat Ali ◽  
Shah Nazir ◽  
Anwar Hussain

This paper presents an efficient OCR system for the recognition of offline Pashto isolated characters. The lack of an appropriate dataset makes it challenging to match against a reference and perform recognition. This research work addresses this problem by developing a medium-size database that comprises 4488 samples of handwritten Pashto character; that can be further used for experimental purposes. In the proposed OCR system the recognition task is performed using convolution neural network. The performance analysis of the proposed OCR system is validated by comparing its results with artificial neural network and support vector machine based on zoning feature extraction technique. The results of the proposed experiments shows an accuracy of 56% for the support vector machine, 78% for artificial neural network, and 80.7% for the proposed OCR system. The high recognition rate shows that the OCR system based on convolution neural network performs best among the used techniques.


Author(s):  
Nitin Sharma ◽  
Pawan Kumar Dahiya ◽  
Baldev Raj Marwah

: Automatic licence plate recognition systems are used for various applications such as traffic monitoring, toll collection, car parking, law enforcement. In this paper, a convolutional neural network and support vector machine based automatic licence plate recognition system is proposed. Firstly, The characters extracts from the input image of vehicle. Then characters are segment and their features are extracts. The extracted features are classified using convolutional neural network and support vector machine for the final recognition of the licence plate. The obtained recognition rate by the hybridization of the convolutional neural network and the support vector machine is 96.5%. The recognition rate obtained for the proposed hybrid automatic licence plate system are compared with three other automatic licence plate systems based on neural network, support vector machine, and convolutional neural network. The proposed automatic licence plate recognition system perform better than the neural network, support vector machine, and convolutional nerural network based automatic licence plate recognition systems.


2013 ◽  
Vol 13 (02) ◽  
pp. 1340001
Author(s):  
SIDDHARTH SWARUP RAUTARAY ◽  
ANUPAM AGRAWAL

Traditional human–computer interaction devices such as the keyboard and mouse become ineffective for an effective interaction with the virtual environment applications because the 3D applications need a new interaction device. An efficient human interaction with the modern virtual environments requires more natural devices. Among them the "Hand Gesture" human–computer interaction modality has recently become of major interest. The main objective of gesture recognition research is to build a system which can recognize human gestures and utilize them to control an application. One of the drawbacks of present gesture recognition systems is being application-dependent which makes it difficult to transfer one gesture control interface into multiple applications. This paper focuses on designing a hand gesture recognition system which is vocabulary independent as well as adaptable to multiple applications. This makes the proposed system vocabulary independent and application independent. The designed system is comprised of the different processing steps like detection, segmentation, tracking, recognition, etc. Vocabulary independence has been incorporated in the proposed system with the help of a robust gesture mapping module that allows the user for cognitive mapping of different gestures to the same command and vice versa. For performance analysis of the proposed system accuracy, recognition rate and command response time have been compared. These parameters have been considered because they analyze the vital impact on the performance of the proposed vocabulary and application-independent hand gesture recognition system.


2020 ◽  
Vol 5 (2) ◽  
pp. 504
Author(s):  
Matthias Omotayo Oladele ◽  
Temilola Morufat Adepoju ◽  
Olaide ` Abiodun Olatoke ◽  
Oluwaseun Adewale Ojo

Yorùbá language is one of the three main languages that is been spoken in Nigeria. It is a tonal language that carries an accent on the vowel alphabets. There are twenty-five (25) alphabets in Yorùbá language with one of the alphabets a digraph (GB). Due to the difficulty in typing handwritten Yorùbá documents, there is a need to develop a handwritten recognition system that can convert the handwritten texts to digital format. This study discusses the offline Yorùbá handwritten word recognition system (OYHWR) that recognizes Yorùbá uppercase alphabets. Handwritten characters and words were obtained from different writers using the paint application and M708 graphics tablets. The characters were used for training and the words were used for testing. Pre-processing was done on the images and the geometric features of the images were extracted using zoning and gradient-based feature extraction. Geometric features are the different line types that form a particular character such as the vertical, horizontal, and diagonal lines. The geometric features used are the number of horizontal lines, number of vertical lines, number of right diagonal lines, number of left diagonal lines, total length of all horizontal lines, total length of all vertical lines, total length of all right slanting lines, total length of all left-slanting lines and the area of the skeleton. The characters are divided into 9 zones and gradient feature extraction was used to extract the horizontal and vertical components and geometric features in each zone. The words were fed into the support vector machine classifier and the performance was evaluated based on recognition accuracy. Support vector machine is a two-class classifier, hence a multiclass SVM classifier least square support vector machine (LSSVM) was used for word recognition. The one vs one strategy and RBF kernel were used and the recognition accuracy obtained from the tested words ranges between 66.7%, 83.3%, 85.7%, 87.5%, and 100%. The low recognition rate for some of the words could be as a result of the similarity in the extracted features.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


Sign in / Sign up

Export Citation Format

Share Document