scholarly journals The Hardy-Littlewood property and maximal operators associated with the inverse Gauss measure

Author(s):  
Jorge J. Betancor ◽  
Alejandro J. Castro Castilla ◽  
Marta De León-Contreras
2021 ◽  
Vol 41 (2) ◽  
pp. 596-608
Author(s):  
Yali Pan ◽  
Qingying Xue
Keyword(s):  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiao Zhang ◽  
Feng Liu

Abstract In this note we study the maximal singular integral operators associated with a homogeneous mapping with rough kernels as well as the corresponding maximal operators. The boundedness and continuity on the Lebesgue spaces, Triebel–Lizorkin spaces, and Besov spaces are established for the above operators with rough kernels in $H^{1}({\mathrm{S}}^{n-1})$ H 1 ( S n − 1 ) , which complement some recent developments related to rough maximal singular integrals.


2006 ◽  
Vol 253 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Sunggeum Hong ◽  
Paul Taylor ◽  
Chan Woo Yang

2018 ◽  
Vol 68 (5) ◽  
pp. 1097-1112 ◽  
Author(s):  
Feng Liu

Abstract In this paper we investigate the regularity properties of one-sided fractional maximal functions, both in continuous case and in discrete case. We prove that the one-sided fractional maximal operators $ \mathcal{M}_{\beta}^{+} $ and $ \mathcal{M}_{\beta}^{-} $ map $ W^{1,p}(\mathbb{R}) $ into $ W^{1,q}(\mathbb{R}) $ with 1 <p <∞, 0≤β<1/p and q=p/(1-pβ), boundedly and continuously. In addition, we also obtain the sharp bounds and continuity for the discrete one-sided fractional maximal operators $ M_{\beta}^{+} $ and $ M_{\beta}^{-} $ from $ \ell^{1}(\mathbb{Z}) $ to $ {\rm BV}(\mathbb{Z}) $. Here $ {\rm BV}(\mathbb{Z}) $ denotes the set of all functions of bounded variation defined on ℤ. The results we obtained represent significant and natural extensions of what was known previously.


2016 ◽  
Vol 59 (3) ◽  
pp. 533-547 ◽  
Author(s):  
ADAM OSȨKOWSKI

AbstractLet $\mathcal{M}$ and G denote, respectively, the maximal operator and the geometric maximal operator associated with the dyadic lattice on $\mathbb{R}^d$. (i)We prove that for any 0 < p < ∞, any weight w on $\mathbb{R}^d$ and any measurable f on $\mathbb{R}^d$, we have Fefferman–Stein-type estimate $$\begin{equation*} ||G(f)||_{L^p(w)}\leq e^{1/p}||f||_{L^p(\mathcal{M}w)}. \end{equation*} $$ For each p, the constant e1/p is the best possible.(ii)We show that for any weight w on $\mathbb{R}^d$ and any measurable f on $\mathbb{R}^d$, $$\begin{equation*} \int_{\mathbb{R}^d} G(f)^{1/\mathcal{M}w}w\mbox{d}x\leq e\int_{\mathbb{R}^d} |f|^{1/w}w\mbox{d}x \end{equation*} $$ and prove that the constant e is optimal. Actually, we establish the above estimates in a more general setting of maximal operators on probability spaces equipped with a tree-like structure.


Sign in / Sign up

Export Citation Format

Share Document