scholarly journals Centrifugal Compressor Stage. Vaneless Diffuser Preliminary Design By Universal Modeling Method

Author(s):  
O. Solovyeva et al., O. Solovyeva et al., ◽  
Author(s):  
Prasad Mukkavilli ◽  
G. Rama Raju ◽  
A. Dasgupta ◽  
G. V. Ramana Murty ◽  
K. V. Jagadeshwar Chary

Diffusers are found to play a significant role in the performance of centrifugal compressors. Extensive studies have been in progress in various research laboratories for improvement of performance with various types of diffusers. One such effort for study of performance of a centrifugal compressor stage with Low Solidity Diffuser (LSD) vanes is presented in this paper. The study was conducted at a tip mach number of 0.35. An exclusive test rig was set up for carrying out these flow studies. The LSD vane is formed using standard NACA profile with marginal modification at the trailing edge region. The study encompasses the variation of setting angle of the LSD vane and the vane solidity. The effect of solidity and the setting angle on overall stage performance is evaluated in terms of flow coefficient, head coefficient and efficiency normalised with respect to these parameters for the case of vaneless diffuser at design flow. Improvement in performance as well as static pressure recovery was observed with LSD as compared to vaneless diffuser configuration. It is concluded from these studies that there is an optimum solidity and stagger angle for the given stage with LSD vanes for the chosen configuration.


Author(s):  
James M. Sorokes ◽  
Jason A. Kopko

The paper addresses the use of a rib style (partial height) vaned diffuser to improve the flowfield downstream of a high flow coefficient centrifugal impeller. Empirical and analytical (3-D CFD) results are presented for both the original vaneless diffuser and the replacement rib configuration. Comparisons are made between the CFD results and the data obtained through single stage rig (SSTR) testing. Comments are offered regarding the qualitative and quantitative agreement between the empirical and analytical results.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

The flow in a radial vaneless diffuser downstream of a centrifugal compressor is highly complex, as the flow is turbulent, unsteady, viscous, and three-dimensional. Depending on the initial state of the end-wall boundary layers and the diffuser length, the flow may become fully developed or may separate from one of the walls. Therefore, to improve the diffuser performance, it is important to understand the flow field in the diffuser in detail. As the diffuser width is generally very small for most radial stages and an adverse pressure gradient exists, secondary flows are generated, making the flow fields more complicated. In addition, skewed boundary layers form on the wall surfaces. As flowrate is reduced, the flow field becomes more complicated and leads to rotating stall. This article presents detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller. Usually, centrifugal compressors with radial impellers are designed in the flow coefficient (ϕ) range ϕ = 0.01 - 0.16. Often, the need arises to design higher flow coefficient, ϕ, radial stages. Detailed measurements were carried out in the vaneless diffuser at seven radial positions downstream of a radial impeller designed for a very high flow coefficient of ϕ = 0.2. The experimental investigation was carried at four rotational speeds 13 000, 15 500, 18 000, and 20 500 r/min, but only the result of 20 500 r/min at near-design-point flowrate (5.11 kg/s) is reported in this article.


Author(s):  
Kishore Ramakrishnan ◽  
Simon K. Richards ◽  
Franc¸ois Moyroud ◽  
Vittorio Michelassi

Previous experimental and CFD investigation of a GE Oil and Gas centrifugal compressor stage with a vaneless diffuser revealed a complex excitation mechanism caused by an aero-acoustic interaction between three blade rows. In stages with vaned diffusers, additional sources of aeromechanical excitation on the impeller can be expected. This unsteady CFD investigation is a follow-up from the previous vaneless diffuser study to identify any additional sources of excitation that arise in the presence of a vaned diffuser in preparation for aeromechanic tests to be conducted later. The study confirms that excitation from impeller-diffuser interaction generated acoustic modes can dominate the potential field excitation from the diffuser vanes. In addition, a significant aero-acoustic excitation to the impeller at a vane pass frequency corresponding to the sum of the vane counts in the two downstream vane rows is observed, and its origination is discussed. The latter excitation is different from that observed in the vaneless diffuser stage where the vane pass frequency observed by the impeller corresponds to the sum of the vane counts in the upstream and downstream vane rows.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

As user demands grew for improved performance and more reliable equipment and as compressor vendors sought improved analytical and design methodologies, the application of computational fluid dynamics (CFD) in the industrial world became a necessity. Fortunately, large increases in available, economic computing power together with development of improved computational methods now provide the industrial designer with much improved analytic capability. As CFD algorithms and software have continued to be developed and refined, it remains essential that validation studies be conducted in order to ensure that the results are both sufficiently accurate and can be obtained in a robust and predictable manner. Part I of this paper presented detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller, where measurements were carried out in the vaneless diffuser at seven radial positions downstream of the radial impeller designed for a very high flow coefficient of ϕ = 0.2. This paper, Part II, attempts to verify and validate the results numerically.


Flow through vaneless diffuser in the centrifugal compressor stage is studied at varied flow conditions using finite volume method based commercial code, ANSYS CFX. The contour of static pressure, stagnation pressure, absolute velocity, as well as meridional velocity divulges the nature of flow that happens in the centrifugal compressor stage. Circumferential non-uniformity due “jet-wake” formation is seen at the impeller exit. These lead to mixing of fluid having varied energy levels which happens within the vaneless diffuser. Total pressure rises along the radius ratio and its distribution is higher near the shroud for all flow conditions. Absolute velocity reduces along radius ratio as area of the flow passage increase indicating diffusion. The meridional velocity is seen as non-uniform at Ф = 0.15 but, it is uniform at diffuser exit at Ф = 0.25.


Sign in / Sign up

Export Citation Format

Share Document