scholarly journals Day/Night Temperatures Influence Growth and Photosynthesis During Containerized Production of Selected Species of Helleborus (Hellebores)

2010 ◽  
Vol 28 (3) ◽  
pp. 179-186
Author(s):  
Adam W. Lowder ◽  
Helen T. Kraus ◽  
Frank A. Blazich ◽  
Stuart L. Warren

Abstract Containerized seedlings of Helleborus foetidus L. (stinking hellebore), H. niger L. (Christmas rose), and H. ×hybridus L. (Lenten rose) were grown under long-day conditions in controlled-environment chambers for 95 days with 9-hr days of 14, 18, 22, 26, or 30C (57, 64, 72, 79, or 86F) in factorial combination with 15-hr nights of 10, 14, 18, 22, or 26C (50, 57, 64, 72, or 79F). Long-day conditions were provided by a 3-hr night interruption. Growth of each species responded differently to day and night temperatures. Calculated maximum root, top, and total dry weight, and leaf area of H. foetidus occurred with days/nights of 20/15, 18/13, 19/14, and 18/15C (68/59, 65/55, 66/57, and 65/59F), respectively. While night temperature (NT) had no effect on root:top ratio [RTR (root dry weight ÷ top dry weight)], RTR was greatest (0.65) with days of 22C (72F). Helleborus niger had calculated maximum root dry weight and total dry weight with days of 14C (57F) and nights of 16 and 13C (60 and 55F), respectively. Top growth of H. niger decreased linearly as NTs increased for days of 14 or 22C (57 or 72F). Day temperatures (DTs) had no effect on RTR, whereas RTR responded quadratically as NT increased with a calculated maximum RTR at nights of 19C (66F). Leaf area was maximized at days/nights of 14/10C (57/50F). At days of 22 or 26C (72 or 79F), top growth of H. ×hybridus responded quadratically as NT increased with maxima occurring at nights of 18 or 17C (64 or 63F). Root dry weight responded quadratically at days of 14, 22, or 26C (57, 72, or 79F) and calculated maxima occurred with nights of 18C (64F). At days of 22 or 26C (72 or 79F), there were quadratic responses in total dry weight with calculated maximum growth of H. ×hybridus at nights of 18 or 17C (64 or 63F), respectively. For days of 14, 22, or 30C (57, 72, or 86F), there were quadratic responses in RTR with greatest RTR calculated at nights of 15, 18, or 16C (59, 64, or 60F), respectively. There were quadratic responses at days of 22 or 26C (72 or 79F) for leaf area with calculated maxima at nights of 18 or 17C (64 or 63F), respectively. As DTs increased from 14 to 30C (57 to 86F) net CO2 assimilation (PN) of H. ×hybridus also increased linearly whereas increased NTs had no effect on PN. In contrast, stomatal conductance was not impacted by DT or NT.

2011 ◽  
Vol 52 (No. 4) ◽  
pp. 164-170 ◽  
Author(s):  
M. Vanaja ◽  
P. Vagheera ◽  
P. Ratnakumar ◽  
N. Jyothi lakshmi ◽  
P. Raghuram Reddy ◽  
...  

A study was conducted with two important rainfed food crops viz., sorghum (Sorghum bicolor L. Moench.) and blackgram (Vigna mungo L. Happer) and two oil seed crops viz., sunflower (Helianthus annuus L.) and groundnut (Arachis hypogaea L.) under two conditions viz., elevated CO<sub>2</sub> (600 ppm) and ambient CO<sub>2</sub> (365 ppm) in open top chambers (OTCs). The observations were recorded at the vegetative stage at 7, 14, 21 and 30 days after sowing (DAS). The results showed significant differences between crops, conditions and time intervals, as well as the single and double order interactions for all the characters studied viz., total dry weight, stem dry weight, root dry weight, leaf dry weight, shoot length, root length and leaf area. Total dry weight and its components viz., stem dry weight, root dry weight and leaf dry weight along with leaf area showed a significant increase under enhanced CO<sub>2</sub> conditions. Among the four crops studied the overall results showed the highest response to elevated CO<sub>2</sub> by blackgram while the lowest response by sorghum.


1992 ◽  
Vol 117 (2) ◽  
pp. 216-219 ◽  
Author(s):  
Asiah A. Malek ◽  
Frank A. Blazich ◽  
Stuart L. Warren ◽  
James E. Shelton

Seedlings of flame azalea [Rhododendron calendulaceum (Michx.) Torr] were grown for 12 weeks under long-day conditions with days at 18, 22, 26, or 30C for 9 hours in factorial combination with nights at 14, 18, 22, or 26C for 15 hours. Total plant dry weight, top dry weight, leaf area, and dry weights of leaves, stems, and roots were influenced by day and night temperatures and their interactions. Dry matter production was lowest with nights at 14C. Root, leaf, top, and total dry weights were maximized with days at 26C in combination with nights at 18 to 26C. Stem dry weight was maximized with days at 26 to 30C and nights at 22C. Leaf area was largest with days at 18 and 26C in combination with nights at 18 or 26C. Within the optimal, day/night temperature range of 26 C/18-26C for total plant dry weight, there was no evidence that alternating temperatures enhanced growth. Shoot: root ratios (top dry weight: root dry weight) were highest with days at 18 and 30C. Leaf area ratio (total leaf area: total plant dry weight) was highest and specific leaf area (total leaf area: leaf dry weight) was largest when days and nights were at 18C and were lower at higher temperatures. Regardless of day/night temperature, leaf weight ratio (leaf dry weight: total plant dry weight) was higher than either the stem weight ratio (stem dry weight: total plant dry weight) or root weight ratio (root dry weight: total plant dry weight). Net leaf photosynthetic rate increased with day temperatures up to 30C.


Author(s):  
Md. Omar Sharif ◽  
Chang-Seob Shin

This study was conducted to evaluate the effect of fertilization and nitrogen fixing (N-fixing) bacterial inoculation on the vegetative growth of alder (Alnus sibirica) plant species while grown in coal mine soil. The study was conducted in a greenhouse of the Forest Science Department, Chungbuk National University, South Korea, during the period of May 2019 to July 2019. A completely randomized design (CRD) comprising of four treatments, including T0—non-fertilized non-inoculation (control), T1—fertilization, T2—bacterial inoculation and T3—fertilization along with bacterial inoculation with three replications were used in the study. The results of the study showed that maximum growth of all studied parameters of alder were observed in fertilization along with bacterial inoculation treatment (T3) and this treatment had significant effect on the growth of these parameters as compared to control, except root dry weight and shoot/root ratio. Fertilization treatment (T1) showed significant increase of stem height, shoot fresh and dry weight, plant dry weight, canopy spread, number of leaves, branches and nodes per plant, leaf area and leaf area index of alder in coal mine soil, as compared to control. Bacterial inoculation treatment (T2) also had positive effect on the vegetative parameters of plants comparing to control, excluding root length, root dry weight, shoot/root ratio, and canopy spread. Therefore, it can be summarized that fertilizer application and bacterial inoculation to the soil have a significant role in improving the vegetative growth of alder in coal mine soil.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 468b-468
Author(s):  
Stephen F. Klauer ◽  
J. Scott Cameron ◽  
Chuhe Chen

After promising results were obtained with an open-style split trellis (two top wires) in its initial year, two new trials were established in 1997 in northwest (Lynden) and southwest (Woodland) Washington. For the split trellis, actual yields were 33% (machine-picked 1/2 season) and 17% (hand-picked) greater, respectively, for the two locations compared to the conventional trellis (one top wire). In Woodland, canes from the split trellis had 33% more berries, 55% more laterals, 69% more leaves, and 25% greater leaf area compared with the conventional trellis. Greatest enhancement of these components was in the upper third of the canopy. Laterals were also shorter in this area of the split canopy, but there was no difference in average total length of lateral/cane between trellis types. Total dry weight/cane was 22% greater in the split trellis, but component partitioning/cane was consistent between the two systems with fruit + laterals (43%) having the greatest above-ground biomass, followed by the stem (30% to 33%) and the leaves (21% to 22%). Measurement of canopy width, circumference, and light interception showed that the split-trellis canopy filled in more quickly, and was larger from preanthesis through postharvest. Light interception near the top of the split canopy was 30% greater 1 month before harvest with 98% interception near the top and middle of that canopy. There was no difference between the trellis types in leaf CO2 assimilation, spectra, or fluorescence through the fruiting season, or in total nitrogen of postharvest primocane leaves.


2021 ◽  
Vol 4 (2) ◽  
pp. 291
Author(s):  
Indri Elang Mayanti ◽  
Basir Achmad

The areas of tropical forests in Indonesia always decrease every year, so that efforts are needed to cultivate plants efficiently for the supply of seedlings. Sungkai (Peronema canescens) has good quality wood that can be used for various purposes, either for construction, furniture, plywood or the leaves can be used for medicine. The purpose of this study was to analyze the growth of stem cuttings of sungkai based on the number of latent buds by calculating the root dry weight, bud dry weight, and total dry weight. This study used a factorial complete randomized design. There were two factors studied, namely the number of buds consisting of 2 levels: 2 buds and 1 bud, and the stem split factor. Each treatment was replicated 3 times and each experiment unit used 5 cuttings. The growth of sungkai cuttings in the treatment of two buds had a total dry weight of 170.04 grams, while the treatment of one bud had a total dry weight of 98.30 grams. The results of this study indicated that the more the number of latent buds, the more root and bud growth of cuttings.Keywords: Coppice; Latent buds; Cuttings; Sungkai


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Nur Edy Suminarti ◽  
A.Y. Edy Guntoro ◽  
A. N. Fajrin

Suminarti et al, 2018. Effect of Source and Dosage of Organic Materials on Changes in Soil Chemical Properties, Growth and Yield of Sorghum Plants (Sorghum bicolor L.Moench) var. KD4 in Dry Land Jatikerto, Malang. JLSO 7(2): Agricultural extensification is the right step to anticipate conditions of food insecurity. This refers to two reasons, namely (1) proliferation of land conversion activities, and (2) sorghum is a carbohydrate-producing plant that is quite tolerant when planted on dry land. The objective of this study was to obtain information about the sources and doses of organic matter that are appropriate to changes in soil chemical properties, growth and yield of sorghum plants, and has been carried out in the dry land of Jatikerto, Malang. A split plot designs with three replications were used in this study, sources of organic material (blothong, UB compost and cow dung) as the main plot, and doses of organic matter (125%, 100% and 75%) as a subplot. Soil analysis was carried out 3 times, i.e. before planting, after application of organic matter and at harvest. The agronomic observations were carried out destructively at 80 days after planting (DAP) including the components of growth (root dry weight, leaf area, and total dry weight of the plant) and harvest at the age of 90 DAP.F test at 5% level was used to test the effect of treatment, while the difference between treatments was based on LSD level of 5%.The results showed that there was a significant interaction between the source and dosage of organic matter on the leaf area and total dry weight, the highest yield was obtained in blothong at various doses. Higher yields of seeds per hectare were also found in blotong: 1.76 tons ha-1, and 1.73 tons ha-1 on 125% doses of organic matter. Blotong application is able to provide elements of N, P and K soil respectively 18.3%, 85.68% and 8.42% for plant.


2021 ◽  
Vol 25 (8) ◽  
pp. 1513-1518
Author(s):  
A.S. Gunu ◽  
M. Musa

Field trial was carried out during the 2019 rainy season (June to October) at the Dryland Teaching and Research Farm of the Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto to determine the growth and yield of sorghum varieties in the study area. The treatments consisted of five (5) sorghum varieties (Samsorg 45, Samsorg 46, Janjari, Yartawa and Jardawa), the treatments were laid out in a Randomized Complete Block Design (RCBD) replicated three (3) times. Data were collected on the growth and yield of the crop. Janjari and Jardawa varieties were higher in plant height. Jardawa and Yartawa varieties were higher in number of leaves. Janjari and Yartawa varieties were higher in total dry weight. Janjari, Jardawa and Yartawa varieties were higher in harvest index. Yartawa variety was higher in leaf area, leaf area index and 1000-grain weight. Jardawa variety was higher in panicle length. Janjari variety was early in number of days to heading, flowering, and maturity and was higher in dry stalk weight. The grain yield (249 – 1506kg ha-1 ) was higher in Janjari and Yartawa varieties (1268 – 1506 kg ha-1). Based on the findings of this research, it could be concluded that Janjari and Yartawa varieties performed better than other varieties in the study area.


1989 ◽  
Vol 40 (2) ◽  
pp. 293 ◽  
Author(s):  
DR Eagling ◽  
RJ Sward ◽  
GM Halloran

Measurements were made on the effect of barley yellow dwarf virus (BYDV) infection on the early growth of four commercial cultivars of ryegrass (Lolium spp.) under two different temperatures (24�C and 16�C). At 24'C, BYDV infection was associated with reduced root dry weight (30-40%) in all cultivars; the effect of infection on shoot dry weight and leaf area was variable. At 16�C, the effect of BYDV infection was variable, being associated with increases in root dry weight, shoot dry weight, and leaf area in one cultivar (Grasslands Ariki) and decreases in another (Victorian). In two other cultivars, root dry weight, shoot dry weight and leaf area were not significantly affected (P>0.05) by infection with BYDV.At 24�C, the reductions in root dry weight associated with BYDV infection were not concomitant with reductions in the root relative growth rates. Up to at least 28 days after inoculation (46-50 days after germination) reductions in root dry weight were associated with both aphid-feeding damage and virus infection. Experiments with the cultivar Victorian, showed that shoot dry weight was not significantly affected (P>0.05) by feeding with viruliferous (BYDV) or non-viruliferous aphids (Rhopalosiphum padi L.). At 16�C, changes in root and shoot dry weight were associated with changes in the root and shoot relative growth rates.


1958 ◽  
Vol 51 (3) ◽  
pp. 347-352 ◽  
Author(s):  
R. H. M. Langer

1. Swards of S. 48 timothy and S. 215 meadow fescue growing alone or together were sampled at intervals of 3 weeks throughout the season. The number and weight of leaves, stems and ears were determined, and leaf area was estimated.2. Despite high rainfall, the total number of tillers in both species declined from the beginning of the experiment until early July, but increased again from then onwards until the original complement had been approximately restored. The number of leaves failed to show a corresponding increase in the autumn because each tiller carried fewer leaves than earlier in the year.3. In the spring total dry weight increased more rapidly in meadow fescue than in timothy which in turn out-yielded meadow fescue later in the season. Both species attained their greatest dry weight soon after ear emergence, a period which was marked by considerable crop growth and relative growth rates.4. Leaf area index reached a maximum before total dry weight had increased to its highest level, but then declined in both species. Meadow fescue differed from timothy by producing a second crop of foliage after the summer with a leaf area index of about 7. This second rise appeared to be due mainly to increased leaf size in contrast to timothy whose leaves became progressively smaller towards the end of the season.5. The differences in growth between the species discussed with reference to their dates of ear emergence which in this experiment differed by about 6 weeks.


Pastura ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Roni N.G.K. ◽  
S.A. Lindawati

The productivity of forage depends on the availability of nutrients in the soil where it is grown, so fertilization to replace harvested produce is absolutely necessary. This study aims to study the response of gamal and indigofera forage on application of inorganic and organic fertilizers. Research using a completely randomized design factorial pattern of two factors, the first factor is the type of plant (G = Gamal; I = Indigofera) and the second factor is the type of fertilizer (T = without Fertilizer; A = Inorganic fertilizer NPK; K = commercial organic fertilizer; O = conventional organic fertilizer; B = bioorganic fertilizer), repeated 4 times so that it consists of 40 experimental units. The variables observed were plant height, number of leaves, stem diameter, leaf dry weight, stem dry weight, total dry weight of leaves, ratio of dry weight of leaves/stems and leaf area per pot. The results showed that there was no interaction between plant species and types of fertilizer in influencing the response of gamal and indigofera plants. Plant species have a significant effect on stem diameter, while fertilizer types have a significant effect on plant height, leaf dry weight, total dry weight of leaves and leaf area per pot. Based on the results of the study it can be concluded that the response of gamal plants is similar to indigofera, all types of fertilizers can improve the response of plants and organic fertilizers produce the same crop response with inorganic fertilizers. Keywords: gamal, indigofera, inorganic fertilizer, organic fertilizer


Sign in / Sign up

Export Citation Format

Share Document