scholarly journals In Medias Res: A Resolution of Some False Dichotomies in Origins of Life Research

Author(s):  
Donald Frohlich ◽  
Richard Austin Choate

In this paper, we address some of the false dichotomies that pervade contemporary scientific and philosophical research about the origin of life. These dichotomies can be divided into two categories, the methodological and the conceptual. In the first case, we focus on providing an alternative to the problems and paradoxes which arise from trying to eliminate a definition of life from scientific research into life’s origins. In the second case, we illustrate how origin of life research is confined by the same conceptual paradigm which continues to plague the mind-body problem. Based on this analysis, we then offer some general criteria that a definition of life should meet.

Author(s):  
John Maynard Smith ◽  
Eors Szathmary

Imagine that, when the first spacemen step out of their craft onto the surface of one of the moons of Jupiter, they are confronted by an object the size of a horse, rolling towards them on wheels, and bearing on its back a concave disc pointing towards the Sun. They will at once conclude that the object is alive, or has been made by something alive. If all they find is a purple smear on the surface of the rocks, they will have to work harder to decide. This is the phenotypic approach to the definition of life: a thing is alive if it has parts, or ‘organs’, which perform functions. William Paley explained the machine-like nature of life by the existence of a creator: today, we would invoke natural selection. There are, however, dangers in assuming that any entity with the properties of a self-regulating machine is alive, or an artefact. In section 2.2, we tell the story of a self-regulating atomic reactor, the Oklo reactor, which is neither. This story can be taken in one of three ways. First, it shows the dangers of the phenotypic definition of life: not all complex entities are alive. Second, it illustrates how the accidents of history can give rise spontaneously to surprisingly complex machine-like entities. The relevance of this to the origin of life is obvious. In essence, the problem is the following. How could chemical and physical processes give rise, without natural selection, to entities capable of hereditary replication, which would therefore, from then on, evolve by natural selection? The Oklo reactor is an example of what can happen. Finally, section 2.2 can simply be skipped: the events were interesting, but do not resemble in detail those that led to the origin of life on Earth. There is an alternative to the phenotypic definition of life. It is to define as alive any entities that have the properties of multiplication, variation and heredity. The logic behind this definition, first proposed by Muller (1966), is that a population of entities with these properties will evolve by natural selection, and hence can be expected to acquire the complex adaptations for survival and reproduction that are characteristic of living things.


2016 ◽  
Vol 25 (2) ◽  
pp. 231-245 ◽  
Author(s):  
Natalia Szostak ◽  
Szymon Wasik ◽  
Jacek Blazewicz

According to some hypotheses, from a statistical perspective the origin of life seems to be a highly improbable event. Although there is no rigid definition of life itself, life as it is, is a fact. One of the most recognized hypotheses for the origins of life is the RNA world hypothesis. Laboratory experiments have been conducted to prove some assumptions of the RNA world hypothesis. However, despite some success in the ‘wet-lab’, we are still far from a complete explanation. Bioinformatics, supported by biomathematics, appears to provide the perfect tools to model and test various scenarios of the origins of life where wet-lab experiments cannot reflect the true complexity of the problem. Bioinformatics simulations of early pre-living systems may give us clues to the mechanisms of evolution. Whether or not this approach succeeds is still an open question. However, it seems likely that linking efforts and knowledge from the various fields of science into a holistic bioinformatics perspective offers the opportunity to come one step closer to a solution to the question of the origin of life, which is one of the greatest mysteries of humankind. This paper illustrates some recent advancements in this area and points out possible directions for further research.


2021 ◽  
Author(s):  
vivek kumar

In this article, I propose and discuss a new definition of life. This new definition considers reproduction and evolution as major aspects of life. It brings into consideration a variety of other life forms like inorganic life, etc. In this study, I aim to present the possibility of various life forms and some of their properties, which might help understand the origin of life on earth and the existence of life in other parts of the cosmos. This new proposed definition of life is independent of the mode of evolution and general enough to consider all potential life forms. This article uses NASA’s definition of life as a structure to derive this generalized definition of life. Finding and exploring new living systems will definitely be very helpful in understanding the aspects of life. In order to explain some complex life forms, a new concept of addition of living systems is introduced in this article. This study underscores the need for further work to understand the origin and properties of living systems.


2019 ◽  
pp. 4-11
Author(s):  
Alan J. McComas

This chapter is concerned with definition and the monism–dualism debate. It first deals with two major issues—a definition of consciousness and the mind–brain problem. The former is simply stated as “consciousness is an organism’s awareness of itself.” After arriving at a clear working definition, the chapter turns to the mind–brain problem. It pays particular attention to the monism–dualism debate, the former of which argues that there is only one unifying reality. From here, the chapter jump-starts a discussion on consciousness as an epiphenomenon of brain activity, ultimately with a conclusion in favor of epiphenomenalism, in the sense that the mind is a product of the working of the brain.


1975 ◽  
Vol 20 (8) ◽  
pp. 660-660
Author(s):  
MADGE SCHEIBEL ◽  
ARNOLD SCHEIBEL

Author(s):  
Marcello Massimini ◽  
Giulio Tononi

This chapter uses thought experiments and practical examples to introduce, in a very accessible way, the hard problem of consciousness. Soon, machines may behave like us to pass the Turing test and scientists may succeed in copying and simulating the inner workings of the brain. Will all this take us any closer to solving the mysteries of consciousness? The reader is taken to meet different kind of zombies, the philosophical, the digital, and the inner ones, to understand why many, scientists and philosophers alike, doubt that the mind–body problem will ever be solved.


Author(s):  
James Van Cleve

In a growing number of papers one encounters arguments to the effect that certain philosophical views are objectionable because they would imply that there are necessary truths for whose necessity there is no explanation. For short, they imply that there are brute necessities. Therefore, the arguments conclude, the views in question should be rejected in favor of rival views under which the necessities would be explained. This style of argument raises a number of questions. Do necessary truths really require explanation? Are they not paradigms of truths that either need no explanation or automatically have one, being in some sense self-explanatory? If necessary truths do admit of explanation or even require it, what types of explanation are available? Are there any necessary truths that are truly brute? This chapter surveys various answers to these questions, noting their bearing on arguments from brute necessity and arguments concerning the mind–body problem.


Ethics ◽  
1981 ◽  
Vol 92 (1) ◽  
pp. 174-176
Author(s):  
Gilbert Harman

Sign in / Sign up

Export Citation Format

Share Document