scholarly journals Effect of Reinforcement of Elastic Modulus in Ultra-Microscopic Particle Filled Polymer Composite Materials.

1993 ◽  
Vol 42 (480) ◽  
pp. 1072-1076 ◽  
Author(s):  
Nobuhiko NAKANO ◽  
Sumiko HASEGAWA ◽  
Yukimichi NAKAO
Author(s):  
Fouad Lahjomri ◽  
Yassine Nioua ◽  
Mohammed Essaid Achour ◽  
Salahddine El Bouazzaoui

1997 ◽  
Vol 500 ◽  
Author(s):  
Anil R. Duggal ◽  
Lionel M. Levinson

ABSTRACTIt has generally been assumed that the switching properties of conductor-filled polymer composites are based on a positive temperature coefficient of resistance (PTCR) effect where, at a certain switch temperature, the material resistivity increases by orders of magnitude. Here we present studies of the electrical switching behavior at high current densities which demonstrate that, in the high power regime, the observed switching is not based on the PTCR effect. Instead, we show that this type of switching appears to be a general feature in conductor-filled polymer composite materials and a qualitative model for the switching phenomenon is proposed. These results suggest that conductor-filled polymer composite materials can provide a new non-mechanical way of rapidly limiting high power short circuit currents. This should have broad applications in the circuit protection industry.


Author(s):  
S.N. Sayapin

The paper considers the problem of sensitivity of large precision space structures made of high-modulus fibrous polymer composite materials to external and internal microdynamic effects. This problem is related to the extent of structure forming elements, as well as to an abrupt increase in the elastic modulus of the material when passing the threshold of low stresses. It is found that under low loading in the orbital flight conditions the calculated values of the elastic modulus of large precision space structures made of high-modulus fibrous polymer composite materials may be higher than the real ones by more than 20 times, which must be taken into account in the calculations. Possible ways to reduce the sensitivity of such space structures made of high-modulus fibrous polymer composite materials to external and internal microdynamic effects are shown.


2021 ◽  
Vol 899 ◽  
pp. 694-700
Author(s):  
Igor D. Simonov-Emelyanov ◽  
Ksenia I. Kharlamova

Questions of the construction of dispersed structures of polymer composite materials using a generalized model of dispersed filled polymer composite materials (DFPCM) are studied. Using the parameter of maximum proportion of filler (φm) allows you to take into account the size, shape, and distribution of part of the dispersed filler at the same time. The transition to generalized and specified parameters when describing the structure of the DFPCM leads to the possibility of highlighting the optimal criteria for obtaining systems with the highest strength characteristics. The transition to generalized and reduced parameters when describing the structure of DFPCM leads to the possibility of selecting optimal criteria that ensure obtaining systems with the necessary level of rheological, electrochemical, physico-mechanical and other characteristics.


2020 ◽  
Vol 329 ◽  
pp. 02031
Author(s):  
Dmitrii Chulkov ◽  
Alexander Terekhin ◽  
Alexander Dumansky ◽  
Maxim Tipikin

This article presents the results of an experimental study of the relationship of acoustic parameters (propagation velocity) of ultrasonic waves with elastic characteristics (elastic modulus) of polymer composite materials. Significant regression dependences of the correlation between the velocity of ultrasonic won and the modulus of elasticity of a composite material based on fiberglass with an epoxy and phenol-formaldehyde binder have been constructed.


Author(s):  
Ch. N. Nguyen ◽  
M. V. Sanyarova ◽  
I. D. Simonov-Emel’yanov

Objectives. The aim is to calculate the composition of dispersion-filled polymer composite materials with different fillers and structures and to highlight differences in the expression of said composition in mass and volume units.Methods. The paper presents the calculation of compositions in mass and volume units for various types of structures comprising dispersion-filled polymer composite materials according to their classification: diluted, low-filled, medium-filled, and highly-filled systems.Results. For calculations, we used fillers with densities ranging from 0.00129 (air) to 22.0 g/cm3 (osmium) and polymer matrices with densities between 0.8 g/cm3 and 1.5 g/cm3 , which represent almost all known fillers and polymer matrices used to create dispersion-filled polymer composite materials. The general dependences of the filler content on the ratio of the filler density to the density of the polymer matrix for dispersion-filled polymer composite materials with different types of dispersed structures are presented. It is shown that to describe structures comprising different types of dispersion-filled polymer composite materials (diluted, low-filled, medium-filled, and highly-filled) it is necessary to use only the volume ratios of components in the calculations. Compositions presented in mass units do not describe the construction of dispersion-filled polymer composite material structures because using the same composition in volume units, different ratios of components can be obtained for different fillers.Conclusions. The dependences of the properties of dispersion-filled polymer composite materials should be represented in the coordinates of the property – content of the dispersed phase only in volume units (vol % or vol. fract.) because the structure determines the properties. Compositions presented in mass units are necessary for receiving batches upon receipt of dispersion-filled polymer composite materials. Formulas are given for calculating and converting dispersion-filled polymer composite material compositions from bulk to mass units, and vice versa.


2016 ◽  
Vol 2 (2) ◽  
pp. 37-42 ◽  
Author(s):  
E. N. Kablov ◽  
L. V. Chursova ◽  
A. N. Babin ◽  
R. R. Mukhametov ◽  
N. N. Panina

Sign in / Sign up

Export Citation Format

Share Document