scholarly journals Room-temperature stable loop-mediated isothermal amplification (LAMP) reagents to detect leptospiral DNA

2021 ◽  
Vol 15 (4) ◽  
pp. 183-189
Author(s):  
Pui-Yuei Lee ◽  
Yien-Ping Wong ◽  
Shuhaidah Othman ◽  
Hui-Yee Chee

Abstract Background Loop-mediated isothermal amplification (LAMP) is one of the most promising tools for rapidly detecting Leptospira spp. However, LAMP is hampered by cold storage to maintain the enzymatic activity of Bst DNA polymerase. Objective To overcome the drawback of cold storage requirement for LAMP reagents we modified the reagents by adding sucrose as stabilizer. We then sought to determine the stability at room temperature of the premixed LAMP reagents containing sucrose. Method Premixed LAMP reagents with sucrose and without sucrose were prepared. The prepared mixtures were stored at room temperature for up to 60 days, and were subjected to LAMP reactions at various intervals using rat kidney samples to detect leptospiral DNA. Results The premixed LAMP reagents with sucrose remained stable for 45 days while sucrose-free premixed LAMP reagents showed no amplification from day 1 of storage at room temperature up to day 14. Conclusion The LAMP reagent system can be refined by using sucrose as stabilizer, thus allowing their storage at room temperature without the need for cold storage. The modified method enables greater feasibility of LAMP for field surveillance and epidemiology in resource-limited settings.

Author(s):  
Meng Yee Lai ◽  
Soo Nee Tang ◽  
Yee Ling Lau

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription–loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 972 ◽  
Author(s):  
Mohammed A. Rohaim ◽  
Emily Clayton ◽  
Irem Sahin ◽  
Julianne Vilela ◽  
Manar E. Khalifa ◽  
...  

Until vaccines and effective therapeutics become available, the practical solution to transit safely out of the current coronavirus disease 19 (CoVID-19) lockdown may include the implementation of an effective testing, tracing and tracking system. However, this requires a reliable and clinically validated diagnostic platform for the sensitive and specific identification of SARS-CoV-2. Here, we report on the development of a de novo, high-resolution and comparative genomics guided reverse-transcribed loop-mediated isothermal amplification (LAMP) assay. To further enhance the assay performance and to remove any subjectivity associated with operator interpretation of results, we engineered a novel hand-held smart diagnostic device. The robust diagnostic device was further furnished with automated image acquisition and processing algorithms and the collated data was processed through artificial intelligence (AI) pipelines to further reduce the assay run time and the subjectivity of the colorimetric LAMP detection. This advanced AI algorithm-implemented LAMP (ai-LAMP) assay, targeting the RNA-dependent RNA polymerase gene, showed high analytical sensitivity and specificity for SARS-CoV-2. A total of ~200 coronavirus disease (CoVID-19)-suspected NHS patient samples were tested using the platform and it was shown to be reliable, highly specific and significantly more sensitive than the current gold standard qRT-PCR. Therefore, this system could provide an efficient and cost-effective platform to detect SARS-CoV-2 in resource-limited laboratories.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Zhongdong Wang ◽  
Haiyan Sun ◽  
Zhisheng Ren ◽  
Bai Xue ◽  
Jie Lu ◽  
...  

Early diagnosis is essential for the control and prevention of tuberculosis (TB). The objective of this study was to investigate the feasibility and performance of loop-mediated isothermal amplification (LAMP) in the diagnosis of pulmonary TB in county-level microscopy centers in Qingdao, Eastern China. A total of 523 presumptive TB patients were consecutively recruited between July 2017 and April 2018, and 22 patients were excluded from the analysis. Of 102 culture-positive cases, TB-LAMP identified 91 cases, demonstrating a sensitivity of 89.2%. In comparison, the sensitivity of routine smear microscopy was 69.6% (71/102), which was significantly lower than that of TB-LAMP (P=0.001). In addition, TB-LAMP sensitivities in smear-positive and smear-negative samples were 98.6% and 67.7%, respectively. In conclusion, our data demonstrate that TB-LAMP outperforms conventional smear microscopy in TB diagnosis, which could be used as an alternative method for smear microscopy in resource-limited settings in China.


2020 ◽  
Author(s):  
Mohammed A Rohaim ◽  
Emily Clayton ◽  
Irem Sahin ◽  
Julianne Vilela ◽  
Manar E Khalifa ◽  
...  

Until vaccines and effective therapeutics become available, the practical way to transit safely out of the current lockdown may include the implementation of an effective testing, tracing and tracking system. However, this requires a reliable and clinically validated diagnostic platform for the sensitive and specific identification of SARS-CoV-2. Here, we report on the development of a de novo, high-resolution and comparative genomics guided reverse-transcribed loop-mediated isothermal amplification (LAMP) assay. To further enhance the assay performance and to remove any subjectivity associated with operator interpretation of result, we engineered a novel hand-held smart diagnostic device. The robust diagnostic device was further furnished with automated image acquisition and processing algorithms, and the collated data was processed through artificial intelligence (AI) pipelines to further reduce the assay run time and the subjectivity of the colorimetric LAMP detection. This advanced AI algorithm-implemented LAMP (ai-LAMP) assay, targeting the RNA-dependent RNA polymerase gene, showed high analytical sensitivity and specificity for SARS-CoV-2. A total of ~200 coronavirus disease (CoVID-19)-suspected patient samples were tested using the platform and it was shown to be reliable, highly specific and significantly more sensitive than the current gold standard qRT-PCR. The system could provide an efficient and cost-effective platform to detect SARS-CoV-2 in resource-limited laboratories.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
King Ting Lim ◽  
Cindy Shuan Ju Teh ◽  
Kwai Lin Thong

Staphylococcus aureus, including methicillin-resistantS. aureus(MRSA), is an important human pathogen that produces a variety of toxins and causes a wide range of infections, including soft-tissue infections, bacteremia, and staphylococcal food poisoning. A loop-mediated isothermal amplification (LAMP) assay targeting thearcCgene ofS. aureuswas developed and evaluated with 119S. aureusand 25 non-S. aureusstrains. The usefulness of the assay was compared with the PCR method that targetsspaandarcCgenes. The optimal temperature for the LAMP assay was 58.5°C with a detection limit of 2.5 ng/μL and 102 CFU/mL when compared to 12.5 ng/μL and 103 CFU/mL for PCR (spaandarcC). Both LAMP and PCR assays were 100% specific, 100% sensitive, 100% positive predictive value (PPV), and 100% negative predictive value (NPV). When tested on 30 spiked blood specimens (21 MRSA, eight non-S. aureusand one negative control), the performance of LAMP and PCR was comparable: 100% specific, 100% sensitive, 100% PPV, and 100% NPV. In conclusion, the LAMP assay was equally specific with a shorter detection time when compared to PCR in the identification ofS. aureus. The LAMP assay is a promising alternative method for the rapid identification ofS. aureusand could be used in resource-limited laboratories and fields.


Sign in / Sign up

Export Citation Format

Share Document