scholarly journals Application of photochromic pigment in mass dyed polypropylene fibres intended for intelligent textiles

2019 ◽  
Vol 12 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Veronika Hrabovská ◽  
Marcela Hricová ◽  
Anna Ujhelyiová

Abstract At the present time, characterised by worsening environmental conditions, the protection of human organism against irreversible damage is necessary. Protective clothing on base of smart textiles represents the future in human clothing. In this article, the effect of photochromic pigments on spinnability, drawability and properties of pigmented polypropylene (PP) fibres is presented. Mechanical properties (tenacity and elongation at break, Young’s modulus), thermo-mechanical properties and the factor of average orientation of fibres were evaluated and discussed. The obtained results indicate a possibility of fibres preparation with photochromic pigments.

2013 ◽  
Vol 709 ◽  
pp. 242-245
Author(s):  
Zheng Qin Liu ◽  
Wei Guo Liu ◽  
Xiu Li Qiu ◽  
Yu Qing Zhang ◽  
Fan Dong Kong

Phenolic fiber is a new fiber and has excellent flame retardant properties. In order to investigate the textile possibility of phenolic fiber and to develop protective clothing and decorative fabrics containing phenolic fiber, the mechanical properties of phenolic fiber were studied firstly, then the polyester fiber was chosen to blend with different portion of phenolic fiber to enhance the strength of the blended yarn and finally the fabrics were knitted with different blended yarns. The strength and wear resistance of different blending ratio of phenolic/polyester blended yarn, and the bursting strength, abrasion resistance and flame retardant properties of the blended fabrics were analyzed and compared. The experimental results shows that the breaking tenacity and elongation at break are low, only 1.3 cN/dtex and 9.4%, respectively, which is not suitable for 100% phenolic fiber to be processed in yarn. The strength and wear resistance of the phenolic/polyester blend yarns and their knitted fabrics increase while the contents of polyester are increased. The flame retardant of phenolic/polyester blend fabrics is improved greatly due to phenolic fiber. Therefore, it is necessary for phenolic fiber to modify its strength and extension in order to be able to get the 100% phenolic yarn and products and in order to give full play to the excellent characteristics of the phenolic fiber.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012029
Author(s):  
V Krmelová ◽  
M Gavendová ◽  
J Krmela ◽  
P Skalková ◽  
E Loksik

Abstract The main objective of this work was to investigate the effect of different cellulose (CEL) content and the draw ratio on the thermal and mechanical properties of drawn polypropylene (PP) fibres. The modification of PP fibres during their production can helps to prepare PP fibres with improved properties, guarantees new opportunities for the expansion of an assortment of PP fibres in the clothing and domestic textile industries. The modified PP/CEL fibres were prepared from PP pellets and PP/cellulose masterbatch via the melt spinning technique at 260 °C followed by drawing for various draw ratios in the company Chemosvit, Fibrochem a. s. (Svit, Slovakia). Differential scanning calorimetry (DSC) was used to evaluate the thermal properties of PP fibres. The mechanical properties (tenacity and elongation at break and modulus of elasticity) and low cycle loading of modified PP fibres were also studied. The obtained experimental results of drawn PP/CEL fibres were compared with neat PP fibre prepared under the same technological conditions. Cellulose had a minimal effect on the melting temperatures of fibres and increased of the PP crystallization temperatures in comparison with the neat drawn PP fibre. The limited decrease of mechanical properties of prepared fibres were observed, but the decreases do not influence on the fibres commercial use.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Eliezer Velásquez ◽  
Sebastián Espinoza ◽  
Ximena Valenzuela ◽  
Luan Garrido ◽  
María José Galotto ◽  
...  

The deterioration of the physical–mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1821
Author(s):  
Ildar I. Salakhov ◽  
Nadim M. Shaidullin ◽  
Anatoly E. Chalykh ◽  
Mikhail A. Matsko ◽  
Alexey V. Shapagin ◽  
...  

Low-temperature properties of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and their blends were studied. The analyzed low-temperature mechanical properties involve the deformation resistance and impact strength characteristics. HDPE is a bimodal ethylene/1-hexene copolymer; LDPE is a branched ethylene homopolymer containing short-chain branches of different length; LLDPE is a binary ethylene/1-butene copolymer and an ethylene/1-butene/1-hexene terpolymer. The samples of copolymers and their blends were studied by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 13С NMR spectroscopy, and dynamic mechanical analysis (DMA) using testing machines equipped with a cryochamber. It is proposed that such parameters as “relative elongation at break at −45 °C” and “Izod impact strength at −40 °C” are used instead of the ductile-to-brittle transition temperature to assess frost resistance properties because these parameters are more sensitive to deformation and impact at subzero temperatures for HDPE. LLDPE is shown to exhibit higher relative elongation at break at −45 °C and Izod impact strength at −20 ÷ 60 °C compared to those of LDPE. LLDPE terpolymer added to HDPE (at a content ≥ 25 wt.%) simultaneously increases flow properties and improves tensile properties of the blend at −45 °C. Changes in low-temperature properties as a function of molecular weight, MWD, crystallinity, and branch content were determined for HDPE, LLDPE, and their blends. The DMA data prove the resulting dependences. The reported findings allow one to understand and predict mechanical properties in the HDPE–LLDPE systems at subzero temperatures.


2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1616
Author(s):  
Vincenzo Titone ◽  
Antonio Correnti ◽  
Francesco Paolo La Mantia

This work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing. With all these samples, it is possible to determine the effect of moisture content on the processing and mechanical properties separately, as well as the combined effect of moisture content on the mechanical properties. The results obtained showed that the amount of absorbed water—both before processing and before mechanical testing—causes an increase in elongation at break and a slight reduction of the elastic modulus and tensile strength. These changes have been associated with possible hydrolytic degradation during the compression molding process and, in particular, with the plasticizing action of the moisture absorbed by the specimens.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2989
Author(s):  
Halina Szafranska ◽  
Ryszard Korycki

In order to ensure a comprehensive evaluation of laminated seams in working clothing, a series of research was carried out to determine the correlation between the parameters of the seam lamination process (i.e., the temperature, the time, the pressure) and the mechanical properties of laminated seams. The mechanical properties were defined by means of the maximum breaking force, the relative elongation at break and the total bending rigidity. The mechanical indexes were accepted as the measure of durability and stability of laminated seams. The correlation between the lamination process parameters and the final properties of the tested seams in working clothing was proposed using a three-factor plan 33. Finally, the single-criteria optimization was introduced and the objective functional is the generalized utility function U. Instead of three independent optimization problems, the single problem was applied, and the global objective function was a weighted average of partial criteria with the assumed weight values. The problem of multicriteria weighted optimization was solved using the determined weights and the ranges of acceptable/unacceptable values.


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14484-14494
Author(s):  
Yahao Liu ◽  
Jian Zheng ◽  
Xiao Zhang ◽  
Yongqiang Du ◽  
Guibo Yu ◽  
...  

We successfully modified graphene oxide with amino-terminated hyperbranched polyamide (HGO), and obtained a high-performance composite with enhanced strength and elongation at break via cross-linking hydroxyl-terminated polybutadiene chains with HGO.


2019 ◽  
Vol 12 (4) ◽  
pp. 1-33 ◽  
Author(s):  
Telmo Adão ◽  
Luís Pádua ◽  
David Narciso ◽  
Joaquim João Sousa ◽  
Luís Agrellos ◽  
...  

MixAR, a full-stack system capable of providing visualization of virtual reconstructions seamlessly integrated in the real scene (e.g. upon ruins), with the possibility of being freely explored by visitors, in situ, is presented in this article. In addition to its ability to operate with several tracking approaches to be able to deal with a wide variety of environmental conditions, MixAR system also implements an extended environment feature that provides visitors with an insight on surrounding points-of-interest for visitation during mixed reality experiences (positional rough tracking). A procedural modelling tool mainstreams augmentation models production. Tests carried out with participants to ascertain comfort, satisfaction and presence/immersion based on an in-field MR experience and respective results are also presented. Ease to adapt to the experience, desire to see the system in museums and a raised curiosity and motivation contributed as positive points for evaluation. In what regards to sickness and comfort, the lowest number of complaints seems to be satisfactory. Models' illumination/re-lightning must be addressed in the future to improve the user's engagement with the experiences provided by the MixAR system.


Sign in / Sign up

Export Citation Format

Share Document