scholarly journals Compressive Property of an Auxetic-Knitted Composite Tube Under Quasi-Static Loading

2020 ◽  
Vol 20 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Andrews Boakye ◽  
Rafui King Raji ◽  
Pibo Ma ◽  
Honglian Cong

AbstractThis research investigates the compressive property of a novel composite based on a weft-knitted auxetic tube subjected to a quasi-static compression test. In order to maximize the influence of the fiber content on the compression test, a Kevlar yarn was used in knitting the tubular samples using three different auxetic arrow-head structures (i.e. 4 × 4, 6 × 6 and 8 × 8 structure). A quasi-static compression test was conducted under two different impact loading speeds (i.e. 5 mm/min and 15 mm/min loading speed). The results indicate that the energy absorption (EA) property of the auxetic composite is highly influenced by the auxeticity of the knitted tubular fabric.

2018 ◽  
Vol 175 ◽  
pp. 02027
Author(s):  
Hang Yin ◽  
Xiaolong Zhang ◽  
Yu Zhang

Passive safety protection technology is to reduce the damage caused by collision by improving the anti-impact performance of the system itself. It has important engineering practical value. Many scholars have carried out the research on the collision design of the train in the structure design of the track vehicle. The core is to absorb the kinetic energy of the collision by absorbing energy structure to reduce the force generated during the collision and minimize casualties. The expansion tube type absorber is usually used as a collision safety protection device in the track vehicle. The quasi-static compression test is carried out for the expansion tube type absorber. The energy absorption characteristics and compression characteristics of the expansion tube energy absorber in quasi-static compression test are studied experimentally. The design and research of the energy absorber for rail vehicles are of guiding significance and practical value.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xinyu Geng ◽  
Yufei Liu ◽  
Wei Zheng ◽  
Yongbin Wang ◽  
Meng Li

To provide a theoretical basis for metal honeycombs used for buffering and crashworthy structures, this study investigated the out-of-plane crushing of metal hexagonal honeycombs with various cell specifications. The mathematical models of mean crushing stress and peak crushing stress for metal hexagonal honeycombs were predicted on the basis of simplified super element theory. The experimental study was carried out to check the accuracy of mathematical models and verify the effectiveness of the proposed approach. The presented theoretical models were compared with the results obtained from experiments on nine types of honeycombs under quasi-static compression loading in the out-of-plane direction. Excellent correlation has been observed between the theoretical and experimental results.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1579 ◽  
Author(s):  
Yang Yu ◽  
Zhuokun Cao ◽  
Ganfeng Tu ◽  
Yongliang Mu

The energy absorption of different cell structures for closed-cell aluminum foam-filled Al tubes are investigated through quasi-static compression testing. Aluminum foams are fabricated under different pressures, obtaining aluminum foams with different cell sizes. It is found that the deformation of the foam core is close to the overall deformation, and the deformation band is seriously expanded when the cell size is fined, which leads to the increase of interaction. Results confirm that the foam-filled tubes absorb more energy due to the increase of interaction between the foam core and tube wall when the foaming pressure increases. The energy absorption efficiency of foam-filled tubes can reach a maximum value of 90% when the foam core is fabricated under 0.30 MPa, which demonstrates that aluminum foams fabricated under increased pressure give a new way for the applications of foam-filled tubes in the automotive industry.


Author(s):  
Souta Kimura ◽  
Toshihiko Mochida ◽  
Takeshi Kawasaki ◽  
Hideyuki Nakamura ◽  
Takashi Yamaguchi

The energy absorption of a crashworthy structure for railway’s rolling stock was studied experimentally and numerically. A quasi-static compression test was conducted using a full-scale mockup of a crashworthy structure constructed with welded aluminum alloys. To predict the experimental results, a finite element (FE) simulation was conducted in which the Gurson-Tvergaard-Needleman (GTN) model, representing the accumulation of ductile fractures by the nucleation, growth and coalescence of micro-voids, was employed as the constitutive equations of the parent aluminum alloys and welded regions. A simulation employing the Von-Mises yielding model as the constitutive equations was performed as a conventional approach to demonstrate the advantages of the simulation using the GTN model in predicting the energy absorbing ability. The predictions of the GTN model simulation were proved to be in better agreement with the experimental data than those of the simulation based on the Von-Mises model. The relationship between the total energy absorption and the local phenomena observed in the compression test is discussed.


Sign in / Sign up

Export Citation Format

Share Document