scholarly journals Analysis of cross-ply laminated plates using isogeometric analysis and unified formulation

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Natarajan ◽  
A.J.M. Ferreira ◽  
Hung Nguyen-Xuan

AbstractIn this paper, we study the static bending and free vibration of cross-ply laminated composite plates using sinusoidal deformation theory. The plate kinematics is based on the recently proposed Carrera Unified Formulation (CUF), and the field variables are discretized with the non-uniform rational B-splines within the framework of isogeometric analysis (IGA). The proposed approach allows the construction of higher-order smooth functions with less computational effort.Moreover, within the framework of IGA, the geometry is represented exactly by the Non-Uniform Rational B-Splines (NURBS) and the isoparametric concept is used to define the field variables. On the other hand, the CUF allows for a systematic study of two dimensional plate formulations. The combination of the IGA with the CUF allows for a very accurate prediction of the field variables. The static bending and free vibration of thin and moderately thick laminated plates are studied. The present approach also suffers fromshear locking when lower order functions are employed and shear locking is suppressed by introducing a modification factor. The effectiveness of the formulation is demonstrated through numerical examples.

2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Y. F. Zheng ◽  
L. Q. Deng

The nonlinear free vibration for viscoelastic cross-ply moderately thick laminated composite plates under considering transverse shear deformation and damage effect is investigated. Based on the Timoshenko-Mindlin theory, strain-equivalence hypothesis, and Boltzmann superposition principle, the nonlinear free vibration governing equations for viscoelastic moderately thick laminated plates with damage are established and solved by the Galerkin method, Simpson integration, Newton-Cotes, Newmark, and iterative methods. In the numerical results, the effects of transverse shear, material viscoelasticity, span-thickness ratio, aspect ratio, and damage effect on the nonlinear free vibrating frequency of the viscoelastic cross-ply moderately thick laminated plates are discussed.


2018 ◽  
Vol 1 (2) ◽  
pp. 35-39
Author(s):  
Kenji Hosokawa

Since composite materials such as laminated composite plates have high specific strength and high structural efficiency, they have been usedin many structural applications. It is therefore very important to make clear the vibration characteristics of the laminated plates for the designand the structural analysis. Especially, the vibration characteristics of the laminated plates with attached mass are essential. However, wecannot find the theoretical or experimental approaches for the free vibration of laminated plates with attached mass. In the present study, theexperimental and numerical approaches are applied to the free vibration of cantilevered symmetrically laminated plates with attached mass.First, by applying the experimental modal analysis technique to the cantilevered symmetrically laminated plates with attached mass, thenatural frequencies and mode shapes of the plates are obtained. Next, the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates with attached mass are calculated by Finite Element Method (FEM). Finally, from the experimental andnumerical results, the effect of the moment of inertia of the attached mass to the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates are clarified.


Author(s):  
Huynh Huu Tai ◽  
Nguyen Van Hieu ◽  
Vu Duy Thang

In this paper the smoothed four-node element with in-plane rotations MISQ24 is combined with a C0-type higher-order shear deformation theory (C0-HSDT) to propose an improved linear quadrilateral plate element for static and free vibration analyses of laminated composite plates. This improvement results in two additional degrees of freedom at each node and require no shear correction factors while ensuring the high precision of numerical solutions. Composite plates with different lay-ups, boundary conditions and various geometries such as rectangular, skew and triangular plates are analyzed using the proposed element. The obtained numerical results are compared with those from previous studies in the literature to demonstrate the effectiveness, the reliability and the accuracy of the present element. Keywords: composite laminated plates; bending problems; free vibration; C0-HSDT; MISQ24.


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Avadesh Sharma ◽  
N. Mittal

AbstractThe application of FEM is shown for free vibration analysis of moderately thick laminated composite plates with edges elastically restrained against translation and rotation. The governing equations employed are based on the first order shear deformation theory including the effects of rotary inertia. Several combinations of translational and rotational elastic edge constraints are considered. Convergence study with respect to the number of nodes has been carried out and the results are compared with those from past investigations available only for simpler problems. Angle-ply and cross-ply laminates with different thickness-to-length ratios are examined. Comparisons are made with results for thin as well as moderately thick laminated plates.


2010 ◽  
Vol 123-125 ◽  
pp. 899-902
Author(s):  
Chao Du ◽  
Qing Qing Ni ◽  
Toshiaki Natsuki

Signals propagate on plate-like structures as ultrasonic guided waves, and analysis of Lamb waves has been widely used for on-line monitoring. In this study, the wave velocities of symmetric and anti-symmetric modes in various directions of propagation were investigated. Since the wave velocities of these two modes are different, it is possible to compute the difference in their arrival times when these waves propagated the distance from the vibration source to sensor. This paper presents an evaluation formulation of wave velocity and describes a generalized algorithm for locating a vibration source on a thin, laminated plate. With the different velocities of two modes based on Lamb wave dispersion, the method uses two sensors to locate the source on a semi-infinite interval of a plate. The experimental procedure supporting this method employs pencil lead breaks to simulate vibration sources on quasi-isotropic and unidirectional laminated plates. The transient signals generated in this way are transformed using a wavelet transform. The vibration source locations are then detected by utilizing the distinct wave velocities and arrival times of the symmetric and anti-symmetric wave modes. The method is an effective technique for identifying impact locations on plate-like structures.


Sign in / Sign up

Export Citation Format

Share Document