scholarly journals A Strut Finite Element for Exact Incompressible Isotropic Hyperelastic Analysis

2018 ◽  
Vol 26 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Vinicius F. Arcaro ◽  
Pietro C. Ferrazzo

Abstract This text describes a mathematical model of a strut finite element for isotropic incompressible hyperelastic materials. The invariants of the Right Cauchy-Green deformation tensor are written in terms of nodal displacements. The equilibrium problem is formulated as an unconstrained nonlinear programming problem, where the objective function is the total potential energy of the structure and the nodal displacements are the unknowns. The constraint for incompressibility is satisfied exactly, thereby eliminating the need for a penalty function. The results of the examples calculated by the proposed mathematical model show five significant digits in agreement when compared with commercial finite element analysis software.

2019 ◽  
Vol 11 (04) ◽  
pp. 1950039 ◽  
Author(s):  
Arash Valiollahi ◽  
Mohammad Shojaeifard ◽  
Mostafa Baghani

In this paper, coupled axial and torsional large deformation of an incompressible isotropic functionally graded nonlinearly elastic solid cylinder is investigated. Utilizing stretch-based constitutive models, where the deformation tensor is non-diagonal is complex. Hence, an analytical approach is presented for combined extension and torsion of functionally graded hyperelastic cylinder. Also, finite element analysis is carried out to verify the proposed analytical solutions. The Ogden model is employed to predict the mechanical behavior of hyperelastic materials whose material parameters are function of radius in an exponential fashion. Both finite element and analytical results are in good agreement and reveal that for positive values of exponential power in material variation function, stress decreases and the rate of stress variation intensifies near the outer surface. A transition point for the hoop stress is identified, where the distribution plots regardless of the value of stretch or twist, intersect and the hoop stress alters from compressive to tensile. For the Ogden model, the torsion induced force is always compressive which means the total axial force starts from being tensile and then eventually becomes compressive i.e., the cylinder always tends to elongate on twisting.


2011 ◽  
Vol 199-200 ◽  
pp. 1595-1599
Author(s):  
Dian Xin Li ◽  
Hong Lin Zhao ◽  
Shi Min Zhang ◽  
Chang Run Wu ◽  
Xian Long Liu ◽  
...  

Based on finite element analysis software ANSYS, the deformation and force condition of the rubber sealing o-ring pre and post with back-up ring under different oil pressure conditions was analyzed. The von mises stress distribution of the o-ring and the change of contact pressure between o-ring and sealing interface pre and post with back-up ring under different oil pressure conditions were discussed. The results show that, the maximum von mises stress of the o-ring is smaller and the maximum von mises stress of the sealing system concentrates on the left top and the right bottom of the back-up ring after using it; the o-ring will not be extruded into the gap of the groove because of the existence of back-up ring which prevents gap-bite and prolongs service life of the o-ring; the contact pressure between o-ring and sealing interface increased, thus the sealing reliability of the system increased.


2011 ◽  
Vol 464 ◽  
pp. 627-631
Author(s):  
Jie Zhang ◽  
Ai Hua Sun ◽  
Le Zhu ◽  
Xiang Gu

Welding residual stress is one of the main factors that affect the strength and life of components. In order to explore the effect on residual stress of welding line by laser shock processing, finite element analysis software ANSYS is used to simulate the welding process, to calculate the distribution of welding residual stress field. On this basis, then AYSYS/LS-DYNA is used to simulate the laser shock processing on welding line. Simulation results show that residual stress distributions of weld region, heat-affected region and matrix by laser shock processing are clearly improved, and the tensile stress of weld region effectively reduce or eliminate. The simulation results and experimental results are generally consistent, it offer reasons for parameter optimization of welding and laser shock processing by finite element analysis software.


2012 ◽  
Vol 204-208 ◽  
pp. 4455-4459 ◽  
Author(s):  
Liu Hong Chang ◽  
Chang Bo Jiang ◽  
Man Jun Liao ◽  
Xiong Xiao

The explicit dynamic finite element theory is applied on the collision of ships with buoys for computer simulation. Using ANSYS/LS-DYNA finite element analysis software, the numerical simulation of the collision between the ton ship and the buoy with different structures and impact points. The collision force, deformation, displacement parameters and the weak impact points of a buoy are obtained. Based on the numerical simulation results, analysis of buoys and structural collision damages in anti-collision features are discussed, and several theoretical sugestions in anti-collision for the design of buoy are provided.


2012 ◽  
Vol 204-208 ◽  
pp. 2167-2171
Author(s):  
Yu Lan Wang ◽  
Guo Dong Zheng

Finite element analysis and calculation are held on the superstructure of the auxiliary channel bridge at the right branching of Beijiang Bridge for a short condition and the service phase. The theoretical launching force is calculated and amended in construction. The results show that when considering load effects such as the dead loads of box girders, the live loads of decks and the pre-stressed secondary forces, the eccentric stress state will appear on the webs, and the steel stress produced by shrinkage and creep of concrete can not be ignored. So the launching force must be amended during the construction process. These conclusions have a certain reference value on the bridge design and construction.


2013 ◽  
Vol 313-314 ◽  
pp. 1038-1041
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Chao Li

According to uncertainty of the design parameters for large span truss of installing wave-maker, in order to avoid the waste of materials,the truss is analyzed based on the finite element analysis software ANSYS to find out its weaknesses and various parts of the deformation. On the premise of ensuring the intensity and stiffness, the weight of the truss is reduced by adjusting its sizes and selecting different profiles, so as to achieve the optimization of the truss of installing wave-maker.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Mashallah Khanehmasjedi ◽  
Sepideh Bagheri ◽  
Vahid Rakhshan ◽  
Mojtaba Hasani

Introduction. Miniscrews have proved quite effective in fixed orthodontic treatment. They can be placed in areas like palatal interradicular zones or midpalatal suture. Despite the value of these methods and their ever-increasing use, their characteristics are not assessed before when implanted in palatal interradicular areas or in the midpalatal suture. We aimed to assess, for the first time, the dynamics of full arch distalization using such miniscrews. Methods. A 3D model of maxilla with all permanent dentition was created from a CT scan volume. Tissues were segmented and differentiated. Afterward, miniscrews and appliances were designed, and the whole model was registered within a finite element analysis software by assigning proper mechanical properties to tissues and orthodontic appliances. The full arches were distalized using transpalatal arches with miniscrews as anchorage devices (in two different models). The extents of stresses and patterns of movements of various elements (teeth, miniscrews, appliances, tissues) were estimated. Results and Conclusions. Comparing the two models, it is obvious that in both models, the stress distribution is the highest in the TPA arms and the head of the miniscrew where the spring is connected. In comparison with the displacement in the X-axis, the “mesial in” rotation is seen in the first molar of both models. But there is one exception and that is the “mesial out” rotation of the right second molar. In all measurements, the amount of movement in Model 2 (with palatal interradicular miniscrews) is more than that in Model 1 (with midpalatal miniscrew). In the Y-axis, more tipping is seen in Model 2, especially the anterior teeth (detorque) and the first molar, but in Model 1, bodily movement of the first molar is more evident. Along the Z-axis, the mesial intrusion of the first molar and the distal extrusion of this tooth can be seen in both models. Again, the displacement values are higher in the second model (with interradicular miniscrews). In comparison with micromotion and stress distribution of miniscrews, in Model 1, maximum stress and micromotion is observed at the head of the miniscrew where it is attached to the spring. Of course, this amount of micromotion increases over time. The same is true for Model 2, but with a lower micromotion. As for the amount of stress, the stress distribution in both miniscrews of both models is almost uniform and rather severe.


Sign in / Sign up

Export Citation Format

Share Document