scholarly journals Detection and Classification of Power Quality Disturbancewaveform Using MRA Based Modified Wavelet Transfrom and Neural Networks

2010 ◽  
Vol 61 (4) ◽  
pp. 235-240 ◽  
Author(s):  
Perumal Chandrasekar ◽  
Vijayarajan Kamaraj

Detection and Classification of Power Quality Disturbancewaveform Using MRA Based Modified Wavelet Transfrom and Neural Networks In this paper, the modified wavelet based artificial neural network (ANN) is implemented and tested for power signal disturbances. The power signal is decomposed by using modified wavelet transform and the classification is carried by using ANN. Discrete modified wavelet transforms based signal decomposition technique is integrated with the back propagation artificial neural network model is proposed. Varieties of power quality events including voltage sag, swell, momentary interruption, harmonics, transient oscillation and voltage fluctuation are used to test the performance of the proposed approach. The simulation is carried out by using MATLAB software. The simulation results show that the proposed scheme offers superior detection and classification compared to the conventional approaches.

Author(s):  
Faridatul Ama Ismail ◽  
Nina Korlina Madzhi ◽  
Noor Ezan Abdullah ◽  
Hadzli Hashim

This paper presents comparative investigation on the classification of rubber latex clone series using Artificial Neural Network (ANN) based on optical sensing technique. Rubber Research Institute of Malaysia (RRIM) introduced the rubber breeding program known as RRIM clone series in order to increase the yield of latex production and the rubber wood to meet the requirement for export and import in upstream sector. Due to the large numbers of clones launched with different characteristics and properties, this bring difficulty such as lack of information regarding to the identification on cloning. Therefore, this work developed an optical based sensing system for classification of the selected RRIM 2000 and 3000 clone series based. Near Infrared Sensors was used as sensing element in order to measure the latex from the top surface and photodiode which received the reflected light from the sensor via reflectance index in term of voltage. The raw obtained data was then used as input parameter for ANN tool which supervised by scaled gradient back propagation and the performance was optimized at 25 neurons with 74.4% accuracy. By using ANN the sensitivity, specificity and accuracy for each clones are measured.  RRIM 3001 shows the highest sensitivity, 94.1% while RRIM 2002 shows the highest specificity of 99.1% accuracy, 93.1%. As a result, the system could differentiate RRIM 2002 more compare to other clones.


1994 ◽  
Vol 161 ◽  
pp. 249-252
Author(s):  
M. Serra-Ricart

Artificial Neural Network techniques are applied to the classification of faint objects, detected in digital astronomical images, and a Bayesian classifier (the neural network classifier, NNC hereafter) is proposed. This classifier can be implemented using a feedforward multilayered neural network trained by the back-propagation procedure (Werbos 1974).


Author(s):  
Vishwad Desai ◽  
◽  
Vijay Savani ◽  
Rutul Patel ◽  
◽  
...  

Manual methods to examine leaf for plant classification can be tedious, therefore, automation is desired. Existing methods try distinctive approaches to accomplish this task. Nowadays, Convolution Neural Networks (CNN) are widely used for such application which achieves higher accuracy. However, CNN's are computationally expensive and require extensive dataset for training. Other existing methods are far less resource expensive but they also have their shortcomings for example, some features cannot be processed accurately with automation, some necessary differentiators are left out. To overcome this, we have proposed a simple Artificial Neural Network (ANN) for automatic classification of plants based on their leaf features. Experimental results show that the proposed algorithm able to achieve an accuracy of 96% by incorporating only a single hidden layer of ANN. Hence, our approach is computationally efficient compared to existing CNN based methods.


Author(s):  
Asma Elyounsi ◽  
Hatem Tlijani ◽  
Mohamed Salim Bouhlel

Traditional neural networks are very diverse and have been used during the last decades in the fields of data classification. These networks like MLP, back propagation neural networks (BPNN) and feed forward network have shown inability to scale with problem size and with the slow convergence rate. So in order to overcome these numbers of drawbacks, the use of higher order neural networks (HONNs) becomes the solution by adding input units along with a stronger functioning of other neural units in the network and transforms easily these input units to hidden layers. In this paper, a new metaheuristic method, Firefly (FFA), is applied to calculate the optimal weights of the Functional Link Artificial Neural Network (FLANN) by using the flashing behavior of fireflies in order to classify ISA-Radar target. The average classification result of FLANN-FFA which reached 96% shows the efficiency of the process compared to other tested methods.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


2021 ◽  
Vol 12 (3) ◽  
pp. 35-43
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Coronary artery disease (CAD) has been the leading cause of death worldwide over the past 10 years. Researchers have been using several data mining techniques to help healthcare professionals diagnose heart disease. The neural network (NN) can provide an excellent solution to identify and classify different diseases. The artificial neural network (ANN) methods play an essential role in recognizes diseases in the CAD. The authors proposed multilayer perceptron neural network (MLPNN) among one hidden layer neuron (MLP) and four hidden layers neurons (P-MLP)-based highly accurate artificial neural network (ANN) method for the classification of the CAD dataset. Therefore, the ten-fold cross-validation (T-FCV) method, P-MLP algorithms, and base classifiers of MLP were employed. The P-MLP algorithm yielded very high accuracy (86.47% in CAD-56 and 98.35% in CAD-59 datasets) and F1-Score (90.36% in CAD-56 and 98.83% in CAD-59 datasets) rates, which have not been reported simultaneously in the MLP.


Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.


2022 ◽  
pp. 1-30
Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.


Author(s):  
Rouviere De Waal ◽  
René Hugo ◽  
Maggi Soer ◽  
Johann J. Krüger

Normal and impaired pure tone thresholds (PTTs) were predicted from distortion product otoacoustic emissions (DP using a feed-forward artificial neural network (ANN) with a back-propagation training algorithm. The ANN used a present and absent DPOAEs from eight DP grams, (2fl -f2 = 406 - 4031 Hz) to predict PTTs at 0.5, 1, 2 and 4 kHz. With normal hearing as < 25 dB HL, prediction accuracy of normal hearing was 94% at 500, 88% at 1000, 88% at 2000 and 93% at 4000 Hz. Prediction of hearing-impaired categories was less accurate, due to insufficient data for the ANN to train on. This research indicates the possibility of accurately predicting hearing ability within 10 dB in normal hearing individuals and in hearing-impaired listeners with DPOAEs and ANNsfrom 500 - 4000 Hz.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 449-461 ◽  
Author(s):  
K Karthikumar ◽  
V Senthil Kumar ◽  
M Karuppiah

Increased utilization of nonlinear loads and fault event on the power system have resulted in a decline in the quality of power provided to the customers. It is fundamental to recognize and distinguish the power quality disturbances in the distribution system. To recognize and distinguish the power quality disturbances, the development of high protection schemes is required. This paper presents an optimal protection scheme for power quality event prediction and classification in the distribution system. The proposed protection scheme combines the performance of both the salp swarm optimization and artificial neural network. Here, artificial neural network is utilized in two phases with the objective function of prediction and classification of the power quality events. The first phase is utilized for recognizing the healthy or unhealthy condition of the system under various situations. Artificial neural network is utilized to perceive the system signal’s healthy or unhealthy condition under different circumstances. In the second phase, artificial neural network performs the classification of the unhealthy signals to recognize the right power quality event for assurance. In this phase, the artificial neural network learning method is enhanced by utilizing salp swarm optimization based on the minimum error objective function. The proposed method performs an assessment procedure to secure the system and classify the optimal power quality event which occurs in the distribution system. At that point, the proposed work is executed in the MATLAB/Simulink platform and the performance of the proposed system is compared with different existing techniques like Multiple Signal Classification-Artificial Neural Network (MUSIC-ANN), and Genetic Algorithm - Artificial Neural Network (GA-ANN). The comparison results demonstrate the superiority of the SSO-ANN technique and confirm its potential to power quality event prediction and classification.


Sign in / Sign up

Export Citation Format

Share Document