scholarly journals Hand and forearm cooling: exploring deep-body cooling in hyperthermic individuals following exercise-induced heating at three different work rates

Author(s):  
Seon-Hong SEOL ◽  
Gyu-Tae BAE ◽  
Nigel A.S. TAYLOR ◽  
Joo-Young LEE
1995 ◽  
Vol 198 (1) ◽  
pp. 221-226 ◽  
Author(s):  
D A Pabst ◽  
S A Rommel ◽  
W A McLellan ◽  
T M Williams ◽  
T K Rowles

Dolphins possess a vascular countercurrent heat exchanger (CCHE) that functions to cool their intra-abdominal testes. Spermatic arteries in the posterior abdomen are juxtaposed to veins returning cooled blood from the surfaces of the dorsal fin and tail flukes. In this study, we investigated the effect of exercise on CCHE function in the bottlenose dolphin. The CCHE flanks a region of the bowel in the posterior abdomen and influences colonic temperatures. A rectal probe housing a linear array of seven copper-constantan thermocouples was designed to measure colonic temperatures simultaneously at positions anterior to, within and posterior to the region of the colon flanked by the CCHE. Immediately after vigorous swimming, temperatures at the CCHE decreased relative to resting and pre-swim values: post-swim temperatures at the CCHE were maximally 0.5 degrees C cooler than pre-swim temperatures. These data suggest that the CCHE has an increased ability to cool the arterial blood supply to the testes when the dolphin is swimming. This ability could offset the increased thermal load on the testes is an exercising dolphin. To the best of our knowledge, this is the first report of deep body cooling in an exercising mammal that is not undertaking a dive.


2009 ◽  
Vol 44 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Brendon P. McDermott ◽  
Douglas J. Casa ◽  
Matthew S. Ganio ◽  
Rebecca M. Lopez ◽  
Susan W. Yeargin ◽  
...  

Abstract Objective: To assess existing original research addressing the efficiency of whole-body cooling modalities in the treatment of exertional hyperthermia. Data Sources: During April 2007, we searched MEDLINE, EMBASE, Scopus, SportDiscus, CINAHL, and Cochrane Reviews databases as well as ProQuest for theses and dissertations to identify research studies evaluating whole-body cooling treatments without limits. Key words were cooling, cryotherapy, water immersion, cold-water immersion, ice-water immersion, icing, fanning, bath, baths, cooling modality, heat illness, heat illnesses, exertional heatstroke, exertional heat stroke, heat exhaustion, hyperthermia, hyperthermic, hyperpyrexia, exercise, exertion, running, football, military, runners, marathoner, physical activity, marathoning, soccer, and tennis. Data Synthesis: Two independent reviewers graded each study on the Physiotherapy Evidence Database (PEDro) scale. Seven of 89 research articles met all inclusion criteria and a minimum score of 4 out of 10 on the PEDro scale. Conclusions: After an extensive and critical review of the available research on whole-body cooling for the treatment of exertional hyperthermia, we concluded that ice-water immersion provides the most efficient cooling. Further research comparing whole-body cooling modalities is needed to identify other acceptable means. When ice-water immersion is not possible, continual dousing with water combined with fanning the patient is an alternative method until more advanced cooling means can be used. Until future investigators identify other acceptable whole-body cooling modalities for exercise-induced hyperthermia, ice-water immersion and cold-water immersion are the methods proven to have the fastest cooling rates.


2018 ◽  
Vol 103 (4) ◽  
pp. 512-522 ◽  
Author(s):  
Joanne N. Caldwell ◽  
Anne M. J. van den Heuvel ◽  
Pete Kerry ◽  
Mitchell J. Clark ◽  
Gregory E. Peoples ◽  
...  
Keyword(s):  

Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S20.2-S20
Author(s):  
Yi-Ning Wu ◽  
Jessica Gravel ◽  
Matthew White ◽  
Josh Avery ◽  
Terrie Enis ◽  
...  

Recent research has shown that exercise can improve post-concussion symptoms. It might be because exercise-induced human growth hormone enhances the brain function and recovery. Exercise under blood flow restriction (BFR) and cooling triggers physiologic responses at a relatively low intensity that might be beneficial to individuals with PCS and requires further investigation. Therefore, our ongoing study is to examine the outcomes of aerobic exercise with (experimental) or without (control) BFR and cooling. Twenty-three participants with PCS less than 1 year were randomly assigned to the control or the experimental groups. Both groups rode the recumbent bike (NuStep) for 30 minutes at 60% of the predicted heart rate while only the experimental group exercised under BFR and cooling (Vasper system) twice a week for 6 weeks followed by 6 weeks of no intervention. In addition to the aerobic exercise, each participant received the standardized physical therapy as part of the 6-week intervention. A post-concussion Symptoms/Signs checklist was filled daily by the participant for 12 weeks. To examine the symptoms fluctuations, the variances of checklist scores for each participant during the intervention period and over the 6 weeks of no intervention were calculated. Mann-Whitney U test showed that variability of the overall symptom severity was significantly less in the experimental group (p = 0.01) during the intervention period, and the overall concussion load remained significantly stable in the experimental group (p = 0.02) after the intervention ended. These preliminary results have demonstrated that aerobic exercise with BFR and cooling enhances the recovery of PCS. Aerobic exercise alleviated the post-concussion symptoms of individuals with PCS less than 1 year. More stable recovery was found in the individuals who exercised at 60% of predicted maximum heart rate under BFR and body cooling as compared to the individuals without body cooling and BFR.


1981 ◽  
Vol 241 (3) ◽  
pp. R136-R145 ◽  
Author(s):  
T. Inomoto ◽  
E. Simon

Pekin ducks, in which cerebral cold sensitivity is negligible, were submitted to general body cooling at warm, thermoneutral, and cold ambient temperature (Ta) with an intestinal thermode. In some animals, hypothermia was enhanced by additional hypothalamic cooling that suppressed cold defense. In other animals, the spinal cord was cooled, either selectively or during intestinal cooling. From core temperature (Tc) and metabolic heat production (M) an overall cold sensitivity of about -5 to -6 W . kg-1 . degrees C-1 was determined at thermoneutrality. Maximum M amounted to four to five times the resting M of 3.8 W . kg-1 and was attained when Tc fell by 2.5 degrees C or more. In the cold, threshold Tc for the activation of M was elevated; overall cold sensitivity remained constant. In the warmth, threshold Tc was lowered; overall cold sensitivity was reduced, if mean skin temperature (Tsk) remained at aout 39 degrees C or higher. Spinal cold sensitivity amounted to about -0.25 W . kg-1 . degrees C-1 at normal Tc and thermoneutral and warm Ta; it increased to aout -0.50 W . kg-1 . degrees C-1 in the cold and during hypothermia. Peripheral cold sensitivity was estimated from Tsk and M as -0.4 to -0.8 W . kg-1 . degrees C-1. It is concluded that overall cold sensitivity in ducks mainly depends on deep-body temperature sensors outside of the central nervous system.


2006 ◽  
Vol 76 (5) ◽  
pp. 324-331 ◽  
Author(s):  
Marsh ◽  
Laursen ◽  
Coombes

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation (α-lipoic acid and α-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also had no effect (p > 0.05). GPX (125.9 ± 2.8 vs. 121.5 ± 3.0 U.gHb–1, p < 0.05) and CAT (6.1 ± 0.2 vs. 5.6 ± 0.2 U.mgHb–1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 ± 4.3 vs. 52.0 ± 5.2 U.mgHb–1, p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.


Author(s):  
Masoud Nasiri ◽  
Saja Ahmadizad ◽  
Mehdi Hedayati ◽  
Tayebe Zarekar ◽  
Mehdi Seydyousefi ◽  
...  

Abstract. Physical exercise increases free radicals production; antioxidant supplementation may improve the muscle fiber’s ability to scavenge ROS and protect muscles against exercise-induced oxidative damage. This study was designed to examine the effects of all-trans resveratrol supplementation as an antioxidant to mediate anti-oxidation and lipid per-oxidation responses to exercise in male Wistar rats. Sixty-four male Wistar rats were randomly divided into four equal number (n = 16) including training + supplement (TS), training (T), supplement (S) and control (C) group. The rats in TS and S groups received a dose of 10 mg/kg resveratrol per day via gavage. The training groups ran on a rodent treadmill 5 times per week at the speed of 10 m/min for 10 min; the speed gradually increased to 30 m/min for 60 minutes at the end of 12th week. The acute phase of exercise protocol included a speed of 25 m/min set to an inclination of 10° to the exhaustion point. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activity, non-enzymatic antioxidants bilirubin, uric acid, lipid peroxidation levels (MDA) and the total antioxidant capacity (TAC) were measured after the exercise termination. The data were analyzed by using one-way ANOVA. The result showed that endurance training caused a significant increase in MDA level [4.5 ± 0.75 (C group) vs. 5.9 ± 0.41 nmol/l (T group)] whereas it decreased the total antioxidant capacity [8.5 ± 1.35 (C group) vs. 7.1 ± 0.55 mmol/l (T group)] (p = 0.001). In addition, GPx and CAT decreased but not significantly (p > 0.05). The training and t-resveratrol supplementation had no significant effect on the acute response of all variables except MDA [4.3 ± 1.4 (C group) vs. 4.0 ± 0.90 nmol/l (TS group)] (p = 0.001) and TAC [8.5 ± 0.90 (C group) vs. 6.6 ± 0.80 mmol/l (TS group)] (p = 0.004). It was concluded that resveratrol supplementation may prevent exercise-induced oxidative stress by preventing lipid peroxidation.


Author(s):  
Anja Lingelbach ◽  
Jürgen Rakoski ◽  
Johannes Ring
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document