scholarly journals Recent Trend of Development of Cutting Tools. Single Crystal Diamond Cutting Tool and Its Crystallographic Orientation.

1995 ◽  
Vol 61 (6) ◽  
pp. 759-763
Author(s):  
Kenitra UEGAMI
2018 ◽  
Vol 14 (5) ◽  
pp. 377-383 ◽  
Author(s):  
Qingshun Bai ◽  
Zhiguo Wang ◽  
Yongbo Guo ◽  
Jiaxuan Chen ◽  
Yuanjiang Shang

Background: Graphitization behavior of diamond has received an increasing interest in nanoscale machining of some hard and brittle materials. Diamond has always been an important and excellent tool material in cutting area. However, the graphitization of the diamond tool is inevitable when it was used in special conditions. It is indicated that the graphitization of diamond crystal has great influence on the wear resistance of diamond cutting tool. The graphitization behavior needs to be investigated extensively in nanoscale with an atomic view. Molecular dynamics simulation provides a useful tool for understanding of the graphitization mechanism of diamond. The investigation on graphitization behavior of single crystal diamond can also provide a useful reference for the application of diamond cutting tool. Materials and Methods: In this paper, a molecular dynamics (MD) diamond crystal model is built to examine the graphitization behavior of diamond under various conditions. The sixfold ring method was employed to identify the structural characteristics of graphite and diamond. The effects of temperature and crystal orientation on the graphitization of diamond have been revealed. Considering the effect of temperature, the anisotropy of diamond graphitization against various crystal planes is presented and discussed carefully. The nano-metric cutting model of diamond tool evaluated by the sixfold ring method also proves the graphitization mechanisms in atomic view. Results: Results indicate that the sixfold ring method is a reliable method to evaluate the graphitization behavior of diamond crystal. There exists a critical temperature of the graphitization of diamond. The results also show that {111} plane is more easy to get graphitization as compared with other crystal planes. However, {100} plane of diamond model presents the highest antigraphitization property. Conclusion: The obtained results have provided the in-depth understanding on the wear of diamond tool in nano-metric machining and underpin the development of diamond cutting tool.


1989 ◽  
Vol 55 (2) ◽  
pp. 347-353
Author(s):  
Masanori Yoshikawa ◽  
Kunihiko Kikuchi ◽  
Tadao Tsukada ◽  
Kazuyuki Sasajima

Author(s):  
Stefan Rakuff ◽  
Paul Beaudet

Diamond turning of microstructures on the surface of large cylindrical workpieces has become important with advances made in roll-to-roll manufacturing processes of optical films, drag reduction films, microfluidic devices, and organic electronic components. Micromachined cylindrical workpieces are used as production masters in various printing, embossing, and coating processes. The microstructures machined in this study were 18μm in height and had a pitch of 35μm. These dimensions required control of the location of the single crystal diamond cutting tool that was used for machining to submicrometer levels. The significant error sources identified in the machining process were thermal effects and deflections of the structural loop of the diamond turning machine (DTM) that led to registration errors of the cutting tool between consecutive passes. Environmental temperature variation errors (ETVEs) were measured and modeled as a function of long-term ambient temperature fluctuations. Also studied was the mechanical compliance of the structural loop of the DTM. The height adjustable tool stack and aerostatic spindle were identified as the most compliant components. The cutting forces for radius and V-shaped diamond cutting tools at various depths of cut were measured using the known compliance of the aerostatic bearing to predict workpiece deflections.


2013 ◽  
Vol 378 ◽  
pp. 444-448
Author(s):  
Seung Yub Baek

Diffractive optical elements (DOE) can be used to simplify optical systems such as lightening its mass, reducing elements numbers and so on. Single-crystal diamond is considered as the preferred tool materials in ultra-precision and nanometer-scale cutting operation. Due to the well known and exceptional difficulty in shaping, the fabrication of diamond cutting tools requires special processing method. As a highly efficient and cost-effective solution, the mechanical lapping process has been extensively applied in tool-making industry. In this paper, the key enabling technologies to design and fabricate the diamond-cutting tools for ultra-precision and submicronic machining are presented and reviewed. The paper describes the shape of micro cutting tool that is based on the finite element method of calculation of relief angle and rake angle.


2007 ◽  
Vol 359-360 ◽  
pp. 249-253
Author(s):  
Zeng Qiang Li ◽  
Tao Sun ◽  
Yong Da Yan ◽  
Jun Jie Zhang ◽  
Ying Chun Liang ◽  
...  

Molecular dynamics is a rapidly developing field of science and has become an established tool for studying the dynamic behavior of material machining. A three-dimensional molecular dynamics (MD) model about the atoms of the diamond cutting tools and the diamond grits is built by using the molecular dynamics. The Tersoff potential function is used to calculate the force and potential energy among the atoms of the diamond tools and the atoms of the diamond grits. The lapping processes at a special cutting depth are simulated. The variety of the specimen potential energy in the lapping process is observed. The mechanism of the diamond micro machining and the form of the surface formation are given by comparing the distribution maps of atoms in initial and cutting states. This study will give a strong support to the diamond cutting tools’ lapping.


Sign in / Sign up

Export Citation Format

Share Document