scholarly journals Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets

Author(s):  
Cong Fei ◽  
Bin Wang ◽  
Yuzheng Zhuang ◽  
Zongzhang Zhang ◽  
Jianye Hao ◽  
...  

Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning. However, the requirement of isolated single modal demonstrations limits the scalability of the approach to real world scenarios such as autonomous vehicles' demand for a proper understanding of human drivers' behavior. In this paper, we propose a novel multi-modal GAIL framework, named Triple-GAIL, that is able to learn skill selection and imitation jointly from both expert demonstrations and continuously generated experiences with data augmentation purpose by introducing an auxiliary selector. We provide theoretical guarantees on the convergence to optima for both of the generator and the selector respectively. Experiments on real driver trajectories and real-time strategy game datasets demonstrate that Triple-GAIL can better fit multi-modal behaviors close to the demonstrators and outperforms state-of-the-art methods.

2020 ◽  
Vol 34 (04) ◽  
pp. 5867-5874
Author(s):  
Gan Sun ◽  
Yang Cong ◽  
Qianqian Wang ◽  
Jun Li ◽  
Yun Fu

In the past decades, spectral clustering (SC) has become one of the most effective clustering algorithms. However, most previous studies focus on spectral clustering tasks with a fixed task set, which cannot incorporate with a new spectral clustering task without accessing to previously learned tasks. In this paper, we aim to explore the problem of spectral clustering in a lifelong machine learning framework, i.e., Lifelong Spectral Clustering (L2SC). Its goal is to efficiently learn a model for a new spectral clustering task by selectively transferring previously accumulated experience from knowledge library. Specifically, the knowledge library of L2SC contains two components: 1) orthogonal basis library: capturing latent cluster centers among the clusters in each pair of tasks; 2) feature embedding library: embedding the feature manifold information shared among multiple related tasks. As a new spectral clustering task arrives, L2SC firstly transfers knowledge from both basis library and feature library to obtain encoding matrix, and further redefines the library base over time to maximize performance across all the clustering tasks. Meanwhile, a general online update formulation is derived to alternatively update the basis library and feature library. Finally, the empirical experiments on several real-world benchmark datasets demonstrate that our L2SC model can effectively improve the clustering performance when comparing with other state-of-the-art spectral clustering algorithms.


2020 ◽  
Vol 34 (07) ◽  
pp. 12717-12724
Author(s):  
Yang You ◽  
Yujing Lou ◽  
Qi Liu ◽  
Yu-Wing Tai ◽  
Lizhuang Ma ◽  
...  

Point cloud analysis without pose priors is very challenging in real applications, as the orientations of point clouds are often unknown. In this paper, we propose a brand new point-set learning framework PRIN, namely, Pointwise Rotation-Invariant Network, focusing on rotation-invariant feature extraction in point clouds analysis. We construct spherical signals by Density Aware Adaptive Sampling to deal with distorted point distributions in spherical space. In addition, we propose Spherical Voxel Convolution and Point Re-sampling to extract rotation-invariant features for each point. Our network can be applied to tasks ranging from object classification, part segmentation, to 3D feature matching and label alignment. We show that, on the dataset with randomly rotated point clouds, PRIN demonstrates better performance than state-of-the-art methods without any data augmentation. We also provide theoretical analysis for the rotation-invariance achieved by our methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yongkai Ye ◽  
Xinwang Liu ◽  
Qiang Liu ◽  
Jianping Yin

Multiview clustering aims to improve clustering performance through optimal integration of information from multiple views. Though demonstrating promising performance in various applications, existing multiview clustering algorithms cannot effectively handle the view’s incompleteness. Recently, one pioneering work was proposed that handled this issue by integrating multiview clustering and imputation into a unified learning framework. While its framework is elegant, we observe that it overlooks the consistency between views, which leads to a reduction in the clustering performance. In order to address this issue, we propose a new unified learning method for incomplete multiview clustering, which simultaneously imputes the incomplete views and learns a consistent clustering result with explicit modeling of between-view consistency. More specifically, the similarity between each view’s clustering result and the consistent clustering result is measured. The consistency between views is then modeled using the sum of these similarities. Incomplete views are imputed to achieve an optimal clustering result in each view, while maintaining between-view consistency. Extensive comparisons with state-of-the-art methods on both synthetic and real-world incomplete multiview datasets validate the superiority of the proposed method.


Author(s):  
Florian Wenzel ◽  
Théo Galy-Fajou ◽  
Christan Donner ◽  
Marius Kloft ◽  
Manfred Opper

We propose a scalable stochastic variational approach to GP classification building on Pólya-Gamma data augmentation and inducing points. Unlike former approaches, we obtain closed-form updates based on natural gradients that lead to efficient optimization. We evaluate the algorithm on real-world datasets containing up to 11 million data points and demonstrate that it is up to two orders of magnitude faster than the state-of-the-art while being competitive in terms of prediction performance.


2020 ◽  
Vol 34 (04) ◽  
pp. 6575-6582
Author(s):  
Yan Yan ◽  
Yuhong Guo

Partial label (PL) learning tackles the problem where each training instance is associated with a set of candidate labels, among which only one is the true label. In this paper, we propose a simple but effective batch-based partial label learning algorithm named PL-BLC, which tackles the partial label learning problem with batch-wise label correction (BLC). PL-BLC dynamically corrects the label confidence matrix of each training batch based on the current prediction network, and adopts a MixUp data augmentation scheme to enhance the underlying true labels against the redundant noisy labels. In addition, it introduces a teacher model through a consistency cost to ensure the stability of the batch-based prediction network update. Extensive experiments are conducted on synthesized and real-world partial label learning datasets, while the proposed approach demonstrates the state-of-the-art performance for partial label learning.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 688 ◽  
Author(s):  
Damijan Novak ◽  
Domen Verber ◽  
Jani Dugonik ◽  
Iztok Fister

When it comes to game playing, evolutionary and tree-based approaches are the most popular approximate methods for decision making in the artificial intelligence field of game research. The evolutionary domain therefore draws its inspiration for the design of approximate methods from nature, while the tree-based domain builds an approximate representation of the world in a tree-like structure, and then a search is conducted to find the optimal path inside that tree. In this paper, we propose a novel metric for game feature validation in Real-Time Strategy (RTS) games. Firstly, the identification and grouping of Real-Time Strategy game features is carried out, and, secondly, groups are included into weighted classes with regard to their correlation and importance. A novel metric is based on the groups, weighted classes, and how many times the playtesting agent invalidated the game feature in a given game feature scenario. The metric is used in a series of experiments involving recent state-of-the-art evolutionary and tree-based playtesting agents. The experiments revealed that there was no major difference between evolutionary-based and tree-based playtesting agents.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Johan Hagelbäck ◽  
Stefan J. Johansson

Bots for real-time strategy (RTS) games may be very challenging to implement. A bot controls a number of units that will have to navigate in a partially unknown environment, while at the same time avoid each other, search for enemies, and coordinate attacks to fight them down. Potential fields are a technique originating from the area of robotics where it is used in controlling the navigation of robots in dynamic environments. Although attempts have been made to transfer the technology to the gaming sector, assumed problems with efficiency and high costs for implementation have made the industry reluctant to adopt it. We present a multiagent potential field-based bot architecture that is evaluated in two different real-time strategy game settings and compare them, both in terms of performance, and in terms of softer attributes such as configurability with other state-of-the-art solutions. We show that the solution is a highly configurable bot that can match the performance standards of traditional RTS bots. Furthermore, we show that our approach deals with Fog of War (imperfect information about the opponent units) surprisingly well. We also show that a multiagent potential field-based bot is highly competitive in a resource gathering scenario.


2021 ◽  
Author(s):  
Yunyou Huang ◽  
Nana Wang ◽  
Suqin Tang ◽  
Li Ma ◽  
Tianshu Hao ◽  
...  

This paper quantitatively reveals the state-of-the-art and state-of-the-practice AI systems only achieve acceptable performance on the stringent conditions that all categories of subjects are known, which we call closed clinical settings, but fail to work in real-world clinical settings. Compared to the diagnosis task in the closed setting, real-world clinical settings pose severe challenges, and we must treat them differently. We build a clinical AI benchmark named Clinical AIBench to set up real-world clinical settings to facilitate researches. We propose an open, dynamic machine learning framework and develop an AI system named OpenClinicalAI to diagnose diseases in real-world clinical settings. The first versions of Clinical AIBench and OpenClinicalAI target Alzheimer's disease. In the real-world clinical setting, OpenClinicalAI significantly outperforms the state-of-the-art AI system. In addition, OpenClinicalAI develops personalized diagnosis strategies to avoid unnecessary testing and seamlessly collaborates with clinicians. It is promising to be embedded in the current medical systems to improve medical services.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Sign in / Sign up

Export Citation Format

Share Document