scholarly journals Tool Wear of (Ti, W, Si)N Coated Cemented Carbide in Cutting Hardened Steel

2009 ◽  
Vol 56 (11) ◽  
pp. 672-676 ◽  
Author(s):  
Tadahiro Wada ◽  
Kohji Iwamoto
2015 ◽  
Vol 798 ◽  
pp. 377-383 ◽  
Author(s):  
Tadahiro Wada ◽  
Hiroyuki Hanyu

An aluminum/chromium based coating film, called (Al,Cr)N coating film, has been developed. This coating film has a slightly more inferior critical scratch load and micro-hardness. Therefore, to improve both the scratch strength and micro-hardness of the (Al,Cr)N coating film, the cathode material of an alumi-num/chromium/tungsten target was used in adding the tungsten (W) to the cathode material of the alumi-num/chromium target. To clarify the effectiveness of the aluminum/chromium/tungsten-based coating film, we measured the thickness, micro-hardness and critical scratch strength of aluminum/chromium/tungsten-based coating film formed on the surface of a substrate of cemented carbide ISO K10 formed by the arc ion plating process. The hardened steel ASTM D2 was turned with the (Al,Cr,W)N, (Al,Cr,W)(C,N), (Al,Cr)N and the (Ti,Al)N coated cemented carbide tools. The tool wear of the coated cemented carbide tools was ex-perimentally investigated. The following results were obtained: (1) The micro-hardness of the (Al,Cr,W)N or (Al,Cr,W)(C,N), (Al,Cr)N coating film was 3110 HV0.25N or 3080 HV0.25N, respectively. (2) The critical scratch load of the (Al,Cr,W)(C,N) coating film was 123 N, which was much higher than that of the (Al,Cr)N or (Ti,Al)N coating film. (3) In cutting the hardened steel using (Al,Cr,W)(C,N) and (Ti,Al)N coated carbide tools, the wear progress of the (Al,Cr,W)(C,N) coated carbide tool was almost equivalent to that of the (Ti,Al)N coated carbide tool. The above results clarify that the aluminum/chromium/tungsten-based coating film, which is a new type of coating film, has both high hardness and good adhesive strength, and can be used as a coating film of WC-Co cemented carbide cutting tools.


2005 ◽  
Vol 2005.80 (0) ◽  
pp. _8-3_-_8-4_
Author(s):  
Tadahiro WADA ◽  
Naoyuki SHIKAMOTO ◽  
Takaomi TOIHARA

2011 ◽  
Vol 58 (8) ◽  
pp. 459-462 ◽  
Author(s):  
Tadahiro Wada ◽  
Koji Iwamoto ◽  
Hiroyuki Hanyu ◽  
Kinya Kawase

2014 ◽  
Vol 6 (3) ◽  
pp. 223-226 ◽  
Author(s):  
Tadahiro Wada ◽  
Mitsunori Ozaki ◽  
Hiroyuki Hanyu ◽  
Kinya Kawase

Author(s):  
Ramsés Otto Cunha Lima ◽  
Anderson Clayton Alves de Melo

It is well known that milling is a rotating and interrupted cutting process in which the milling cutter is made up of a number of inserts placed around its body and that each insert has the function of removing an amount of material from the workpiece per revolution. This feature induces the cyclic thermal loading in the cutting tool edge leading the insert to thermal fatigue, which induces nucleation and propagation of thermal cracks and accelerates the process of tool wear. This paper proposes a method to minimize this thermal cycling effect. In this case, hot air was blown into the idle phase of the milling cutter during face milling of an AISI 1045 steel with coated cemented carbide inserts. The main goal was to make the process quasi-continuous from the thermal viewpoint. Trials were carried out dry, at room temperature and with hot air applied at 100, 350 and 580°C, and wet at room temperature and 580°C. In this last case, an MQL (Minimum Quantity of Lubricant) system was used to create a spray of cutting fluid. After milling trials, the inserts were taken to a scanning electron microscope where the number of thermal cracks, wear and other damage was analyzed. It was observed that the heating of the idle phase helped reducing the number of thermal cracks and tool wear.


Sign in / Sign up

Export Citation Format

Share Document