scholarly journals A Design of a Hybrid Algorithm for Optical Character Recognition of Online Hand-Written Arabic Alphabets

2019 ◽  
pp. 2067-2079
Author(s):  
Waleed Noori Hussein ◽  
Haider N. Hussain

     The growing relevance of printed and digitalized hand-written characters has necessitated the need for convalescent automatic recognition of characters in Optical Character Recognition (OCR). Among the handwritten characters, Arabic is one of those with special attention due to its distinctive nature, and the inherent challenges in its recognition systems. This distinctiveness of Arabic characters, with the difference in personal writing styles and proficiency, are complicating the effectiveness of its online handwritten recognition systems. This research, based on limitations and scope of previous related studies, studied the recognition of Arabic isolated characters through the identification of its features and dots in view of producing an efficient online Arabic handwriting isolated character recognition system. It proposes a hybrid of decision tree and Artificial Neural Network (ANN), as against being combined with other algorithms as found in previous studies. The proposed recognition process has four main steps with associated sub-steps. The results showed that the proposed method achieved the highest performance at 96.7%, whereas the benchmark methods which are EDMS and Naeimizaghiani had 68.88% and 78.5 % respectively. Based on this, ANN has the best performance recognition rate at 98.8%, while the best rate for decision tree was obtained at 97.2%.

2020 ◽  
Vol 17 (9) ◽  
pp. 4267-4275
Author(s):  
Jagadish Kallimani ◽  
Chandrika Prasad ◽  
D. Keerthana ◽  
Manoj J. Shet ◽  
Prasada Hegde ◽  
...  

Optical character recognition is the process of conversion of images of text into machine-encoded text electronically or mechanically. The text on image can be handwritten, typed or printed. Some of the examples of image source can be a picture of a document, a scanned document or a text which is superimposed on an image. Most optical character recognition system does not give a 100% accurate result. This project aims at analyzing the error rate of a few open source optical character recognition systems (Boxoft OCR, ABBY, Tesseract, Free Online OCR etc.) on a set of diverse documents and makes a comparative study of the same. By this, we can study which OCR is the best suited for a document.


Handwritten character recognition (HCR) mainly entails optical character recognition. However, HCR involves in formatting and segmentation of the input. HCR is still an active area of research due to the fact that numerous verification in writing style, shape, size to individuals. The main difficult part of Indian handwritten recognition has overlapping between characters. These overlapping shaped characters are difficult to recognize that may lead to low recognition rate. These factors also increase the complexity of handwritten character recognition. This paper proposes a new approach to identify handwritten characters for Telugu language using Deep Learning (DL). The proposed work can be enhance the recognition rate of individual characters. The proposed approach recognizes with overall accuracy is 94%.


Author(s):  
Binod Kumar Prasad

Purpose of the study: The purpose of this work is to present an offline Optical Character Recognition system to recognise handwritten English numerals to help automation of document reading. It helps to avoid tedious and time-consuming manual typing to key in important information in a computer system to preserve it for a longer time. Methodology: This work applies Curvature Features of English numeral images by encoding them in terms of distance and slope. The finer local details of images have been extracted by using Zonal features. The feature vectors obtained from the combination of these features have been fed to the KNN classifier. The whole work has been executed using the MatLab Image Processing toolbox. Main Findings: The system produces an average recognition rate of 96.67% with K=1 whereas, with K=3, the rate increased to 97% with corresponding errors of 3.33% and 3% respectively. Out of all the ten numerals, some numerals like ‘3’ and ‘8’ have shown respectively lower recognition rates. It is because of the similarity between their structures. Applications of this study: The proposed work is related to the recognition of English numerals. The model can be used widely for recognition of any pattern like signature verification, face recognition, character or word recognition in another language under Natural Language Processing, etc. Novelty/Originality of this study: The novelty of the work lies in the process of feature extraction. Curves present in the structure of a numeral sample have been encoded based on distance and slope thereby presenting Distance features and Slope features. Vertical Delta Distance Coding (VDDC) and Horizontal Delta Distance Coding (HDDC) encode a curve from vertical and horizontal directions to reveal concavity and convexity from different angles.


2020 ◽  
Author(s):  
Syed Saqib Raza Rizvi ◽  
Muhammad Adnan Khan ◽  
Sagheer Abbas ◽  
Muhammad Asadullah ◽  
Nida Anwer ◽  
...  

Abstract Optical character recognition systems convert printed or handwritten scripts into digital text formats like ASCII or UNICODE. Urdu-like script languages like Urdu, Punjabi and Sindhi are widely spoken languages of the world, especially in Asia. An enormous amount of printed and handwritten text of such languages exist, which needs to be converted into computer-understandable formats for knowledge extraction. In this study, extreme learning machine’s (ELM’s) most recently proposed variant called deep extreme learning machine (DELM)-based optical character recognition (OCR) system is proposed to enhance Urdu-like script language’s character recognition rate. The proposed DELM-based character recognition model is optimizing the OCR process by reducing the overhead of Pre-processing, Segmentation and Feature Extraction Layer. The proposed system evaluations accomplished 98.75% training accuracy with 1.492 × 10−3 RMSE and 98.12% testing accuracy with 1.587 × 10−3 RMSE, with six DELM hidden layers. The results show that the proposed system has attained the foremost recognition rate as compared to any previously proposed Urdu-like script language OCR system. This technique is applicable for machine-printed text and fractionally useful for handwritten text as well. This study will aid in the advancement of more accurate Urdu-like script OCR’s software systems in the future.


Author(s):  
Bassam Alqaralleh ◽  
Malek Zakarya Alksasbeh ◽  
Tamer Abukhalil ◽  
Harbi Almahafzah ◽  
Tawfiq Al Rawashdeh

This paper brings into discussion the problem of recognizing Arabic numbers using a monocular camera as the only sensor. When a digital image is presented in this application, optical character recognition (OCR) can be exploited to comprehend numerical data. However, there has been a limited success when applied to the handwritten Arabic (Indian) numbers. This paper aims to overcome this limitation and introduces optical character recognition system based on skeleton matching. The proposed approach is used for handwritten Arabic numbers only. The experimental results indicate the effectiveness of the proposed optical character recognition system even for numbers written in worst case. The right system achieves a recognition rate of 99.3 %.


Sign in / Sign up

Export Citation Format

Share Document