scholarly journals Kinetics of Reactive Blue 21 Decolorization Using Peracetic Acid

Author(s):  
Vu Duy ◽  
Le Van Chieu ◽  
Cao The Ha

Decolorization rate of Reactive Blue 21 by peracetic acid in aqueous solutions was measured at pH 6.0. Concentrations of peracetic acid were applied in the range of 1 - 3 mM. The reaction kinetics were monitored by recording the light absorption of the Reactive Blue 21 at 660 nm. The obtained results showed that the decolorization happened via non-catalytic and auto-catalytic reactions. Both the reactions were proposed to obey the second-order rate law.

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Adrian Topolski ◽  
Živadin Bugarčić

AbstractSubstitution of chloride in [PtCl(bpma)]+ and [PtCl(gly-met-S,N,N)], where bpma is bis(2-pyridylmethyl)amine and gly-met-S,N,N is glycyl-l-methionine, was studied as a function of the entering nucleophile concentration and temperature. Reactions between the platinum(II) complexes and thiourea (TU), iodides (I−), and nitrites(III) (NO2−) were carried out in aqueous solutions using conventional UV-VIS spectrophotometry. Suitable ionic conditions were reached by an addition of 0.1 M NaClO4 and 0.01 M NaCl (to suppress hydrolysis). The second-order rate constants, k 2, for the studied reactions with NO2− varied between 0.036–0.038 M−1 s−1, and for the reactions with TU between 0.095–1.06 M−1 s−1, respectively. The reaction between TU and the [PtCl(bpma)]+ ion is ten times faster than that of the [PtCl(gly-met-S,N,N)] complex. An analysis of the activation parameters, ΔH ≠ and ΔS ≠, for the selected reactions clearly shows their associative nature.


1999 ◽  
Vol 64 (11) ◽  
pp. 1770-1779 ◽  
Author(s):  
Herbert Mayr ◽  
Karl-Heinz Müller

The kinetics of the electrophilic additions of four diarylcarbenium ions (4a-4d) to tricarbonyl(η4-cyclohepta-1,3,5-triene)iron (1) have been studied photometrically. The second-order rate constants match the linear Gibbs energy relationship log k20 °C = s(E + N) and yield the nucleophilicity parameter N(1) = 3.69. It is concluded that electrophiles with E ≥ -9 will react with complex 1 at ambient temperature.


2014 ◽  
Vol 28 (5) ◽  
pp. 3357-3362 ◽  
Author(s):  
Ankush B. Bindwal ◽  
Prakash D. Vaidya

Author(s):  
Aigul A. Maksyutova ◽  
Elvina R. Khaynasova ◽  
Yuriy S. Zimin

The ultraviolet spectroscopy method has been applied to study the kinetics of the ozone reactions with nitrogenous bases (NB), namely adenine and cytosine in aqueous solutions. At the first research stage, the range of NB working concentrations has been determined. It was found that linear dependences between optical densities and concentrations of nitrogenous bases aqueous solutions are quite reliable, with correlation coefficients r ≥ 0.998, are satisfied up to [NB] = 2.3 ∙ 10–4 mol/l. According to the Bouguer-Lambert-Beer law, adenine and cytosine extinction coefficients in aqueous solutions were determined and subsequently used to calculate their residual concentrations. At the next stage, the kinetics of nitrogenous bases ozonized oxidation was studied with equal initial concentrations of the starting substances ([NB]0 = [О3]0). The results revealed that the kinetic consumption curves of the starting reagents are fairly well linearized (r ≥ 0.996) in the second-order reaction equation coordinates. As found with the bubbling installation, 1 mol of the absorbed ozone falls on 1 mol of the used NB. Thus, the reactions of ozone with adenine and cytosine explicitly proceed according to the second-order kinetic laws (the first – according to О3 and the first – according to NB). The rate constants were calculated by the integral reaction equations, the values of which indicate a higher ozone reactivity in relation to nitrogen bases. The temperature dependences of the second-order rate constants was studied ranging 285-309 K, and the activation parameters (pre-exponential factors and activation energies) of the ozone reactions with adenine and cytosine in aqueous solutions were determined.


1963 ◽  
Vol 41 (1) ◽  
pp. 231-237 ◽  
Author(s):  
G. R. Williams

The kinetics of reduction of ferricytochrome c by hydroquinone have been studied. The reaction does not conform to a simple second-order rate equation and it is demonstrated that the deviations are brought about by the presence of p-quinone, one of the products of the reaction. The accelerating effect of p-quinone is explained tentatively on the basis of an involvement of the semi-quinone. The effects on the reaction of pH, ionic strength, and temperature are reported and used to suggest features of the reaction mechanism.


1994 ◽  
Vol 30 (3) ◽  
pp. 53-61 ◽  
Author(s):  
Harro M. Heilmann ◽  
Michael K. Stenstrom ◽  
Rolf P. X. Hesselmann ◽  
Udo Wiesmann

In order to get basic data for the design of a novel treatment scheme for high explosives we investigated the kinetics for the aqueous alkaline hydrolysis of 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX) and the temperature dependence of the rate constants. We used an HPLC procedure for the analysis of HMX. All experimental data could be fit accurately to a pseudo first-order rate equation and subsequent calculation of second-order rate constants was also precise. Temperature dependence could be modeled with the Arrhenius equation. An increase of 10°C led to an average increase in the second-order rate constants by the 3.16 fold. The activation energy of the second-order reaction was determined to be 111.9 ±0.76 kJ·moJ‒1. We found the alkaline hydrolysis to be rapid (less than 2.5% of the initial HMX-concentration left after 100 minutes) at base concentrations of 23 mmol oH‒/L and elevated temperatures between 60 and 80°C.


2013 ◽  
Vol 67 (8) ◽  
pp. 1867-1872 ◽  
Author(s):  
Jingjing Yang ◽  
Gang Wen ◽  
Ji Zhao ◽  
Xiaoling Shao ◽  
Jun Ma

The kinetics for reaction between bisphenol A (BPA) and permanganate was examined over pH range of 5.0–9.9 and the estrogenic activity of aqueous BPA solution after oxidation was assessed by yeast two-hybrid assay. Reaction kinetics follows the second-order rate law, with the apparent second-order rate constant of 15.1 ± 1.1 M−1s−1 at pH 6.0 and 25°C and the activation energy of 48.7 kJ/mol. The kinetics exhibits pH dependency and the specific rate constants related to speciation of BPA are 50 ± 28 M−1s−1, 9.6 (±0.6) × 103 M−1s−1 and 1.4 (±0.1) × 104 M−1s−1 for BPA, BPA− and BPA2−, respectively. The results of the estrogenic/antiestrogenic activity test show that there is a hysteresis for the removal of estrogenic activity of aqueous BPA solution at pH 7.3. Removal of BPA is completed in 10 min, but complete removal of estrogenic activity requires a further 20 min.


1978 ◽  
Vol 33 (4) ◽  
pp. 439-449 ◽  
Author(s):  
Volker Böhmer ◽  
Klaus Wörsdörfer

Abstract The aminolysis of 2-(2-hydroxybenzyl)phenyl acetates with n-butylamine in dioxane is much faster than for the corresponding 2-(2-methoxybenzyl)phenyl acetates or 2-methyl-phenyl acetates. The kinetic results can be explained by two equivalent mechanisms. Both of them include the formation of a 1:1-complex between 2-(2-hydroxybenzyl)phenyl acetate and n-butylamine which is formed in an equilibrium. The reaction of this complex according to a second order rate law seems to be more probable than the reaction of the free ester according to a third order rate law.


Sign in / Sign up

Export Citation Format

Share Document