scholarly journals Cloning recombinant pHW2000 vector carrying the HA gene for preparation of the primary influenza A/H5N1 vaccine strain

Author(s):  
Nguyen Thi Thu Hang ◽  
Hoang Thi Thu Hang ◽  
Nguyen Hung Chi ◽  
Chu Hoang Ha ◽  
Nguyen Trung Nam

Influenza A/H5N1 virus evolves rapidly and generate new variants, therefore it is essential to develop effective vaccines against the currently circulating influenza strains. Among clades and subclades of highly pathogenic avian influenza (HPAI) H5N1 viruses circulating in Vietnam, H5N1 clade 1.1 and clade 2.3.2.1c possess genetic relationships to many strains of influenza; thus they are suggested to be used for producing vaccines against avian influenza. In this article, two HA gene segments of two types of A/H5N1 influenza clade have been designed: HA clade 1.1 gene consists 1825 nucleotides encoding 565 amino acids, HA clade 2.3.2.1c gene consists 1822 nucleotides, encoding 564 amino acids. Most importantly, nucleotide sequence of the pathogenic region of HA was removed. Each of the two HA segments corresponding to the two clades were successfully cloned into pHW2000 vector and will be used as a candidate for production of avian influenza vaccines using reverse genetics technique.  

2018 ◽  
Vol 16 (2) ◽  
pp. 369-376
Author(s):  
Nguyen Thi Thu Hang ◽  
Hoang Thi Thu Hang ◽  
Nguyen Hung Chi ◽  
Vu Huyen Trang ◽  
Chu Hoang Ha ◽  
...  

The influenza A/H5N1 virus is an RNA virus belonging to the family of Orthomyxoviridae. The highly pathogenic influenza A/H5N1 virus exhibit the ability to cause high mortality in poultry and infect humans. Technology for vaccine seed strain production of influenza A virus using reverse genetics requires the creation of recombinant vectors carrying viral genomic segments. To create recombinant pHW2000 vectors containing the neuraminidase (NA) gene segment encoding an important surface antigen of influenza A virus, two N1 NA gene structures were designed based on the NA gene sequences of two subtypes of highly pathogenic influenza A/H5N1 clade (clade 1.1 and clade 2.3.2.1c) and then inserted into pHW2000 vector. These two clades of highly pathogenic avian influenza viruses that are still circulating in Vietnam, with antigen homology and genetic relationships to many strains of influenza A viruses, have been suggested to be used for producing vaccines against emerging avian influenza A/H5N1 virus. Each NA gene construct consists of 1453 nucleotides in which two ends of the gene are two non-coding regions (46 nucleotides and 57 nucleotides) containing primer binding site and cleavage site of BsaI. In the middle of each NA gene is one region of 1350 nucleotides encoding 449 amino acids, ensuring catalytic function and antigenicity of NA protein. Two NA segments corresponding to the two clades of influenza A viruses were successfully cloned into pHW2000 vectors for the generation of two recombinant vectors pHW2000-NA clade 1.1 and pHW2000-NA clade 2.3.2.1c. These recombinant vectors will be used for production of candidate avian influenza vaccine strains using reverse genetics technique.


2019 ◽  
Vol 42 (2) ◽  
pp. 189-194
Author(s):  
Furkan Alaraji ◽  
Hussam Muhsen ◽  
Abdullah O. Alhatami ◽  
Yahia Ismail Khudhair

Abstract For the first time in Iraq, we identified in March, 2018 the presence of a highly virulent avian influenza virus (AIV), H5N1 (Clade 2.3.2.1c), causing highly pathogenic avian influenza (HPAI) in poultry farms, Iraq,. The identification of the virus was done using a rapid serological test, a real time-qPCR, and glycoprotein gene sequencing. Using sequencing and phylogenetic analyses, the clade 2.3.2.1c virus was recorded to be clustered, with high similarity to Asian and West African AIV, HPAI H5N1 from Ivory Coast identified in 2015. According to our knowledge, there was no previous detection of the clade 2.3.2.1c made in Iraq. Our results provide evidence that high risk of HPAI H5 outbreaks might be present in Iraq, and this needs to lead to high quality surveillance targeting of wild and domestic birds for early diagnosis of HPAI. The current work provides feasible and accurate approaches for understanding the evolution of HPAI H5 virus in different countries around the world.


2018 ◽  
Vol 253 ◽  
pp. 20-27 ◽  
Author(s):  
Fengwei Zhang ◽  
Shanshan Wang ◽  
Yanan Wang ◽  
Xuechai Shang ◽  
Hongjuan Zhou ◽  
...  

2017 ◽  
Vol 56 (4) ◽  
pp. 339
Author(s):  
C. S. KYRIAKIS (Κ. ΣΠ. ΚΥΡΙΑΚΗΣ) ◽  
K. Van REETH

The huge epizootics of highly pathogenic avian influenza (subtype H5N1) in Southeastern Asia over the last two years and especially the transmission of avian influenza viruses to humans have alerted the international scientific community. Many support that the threat of a new influenza pandemic appears greater today than ever before. During the 20th century, humanity has faced three pandemics, including the "Spanish flu" of 1918-19, which claimed over 20 to 40 million lives, and two less dramatic pandemics in 1957-58 and 1968-69. Influenza A viruses are single stranded RNA viruses belonging to the family Orthomyxoviridae. Their genome expresses only 10 proteins, most important of which are the two surface glycoproteins: haemagglutinin (HA) and neuraminidase (NA). So far, 16 different types of haemagglutinin (HI to Η16) and 9 of neuraminidase (Nl to N9) have been recognized. Influenza A viruses are grouped into "subtypes", according to the HA and NA surface proteins they bear (for example Η I N I , H5N2). Natural reservoirs of influenza A viruses are the wild aquatic birds (migratory waterfowl), from which all types of HA and NA have been isolated. It is important to mention that migratory waterfowl do not show clinical signs of disease, but shed the virus through their excretions.The host range of flu viruses includes domestic poultry, and mammalian species from aquatic mammals to horses, humans and swine. Because of their segmented single stranded RNA genome, influenza viruses have a very high mutation rate (genetic drift) and the possibility to undergo reassortment. Reassortment may occur when more than one virus co-infect the same cell, exchange genes and as a result, provide a totally new influenza virus (genetic shift). At least two subtypes of influenza A viruses are currendy endemic within the human population (H1N1 and H3N2), causing every year outbreaks of disease with very low mortality, especially in elders. Unlike these endemic viruses, pandemic viruses have a much higher morbidity, affecting people of all ages. Η I N I , H3N2 and H1N2 influenza viruses are currently circulating in the European and American swine population. Some of the swine influenza virus subtypes, namely Η I N I and H3N2, are thus similar to those of humans, but there are still important antigenic differences between them. Only rarely swine influenza viruses may be transmitted or cause disease to humans. Unlike mammalian influenza viruses, influenza viruses of domestic birds are grouped in two "pathotypes": low pathogenic avian influenza (LPAI) viruses, which cause localized infections and remain mild or subclinical, and highly pathogenic avian influenza (HPAI) viruses, which cause severe general infection with mortality up to 100% (fowl plague). The majority of avian influenza viruses are low pathogenic and only some, but not all, viruses of H5 and H7 subtypes are highly pathogenic. Occasionally low pathogenic Η5 or H7 viruses from wild birds transmit to poultry. Such viruses can undergo mutations in poultry as a result of which they may acquire a highly pathogenic phenotype. Until the recent avian influenza epizootics in Asia, the predominant theory for the creation of a pandemic virus supported that the pig was likely to act as an intermediate host for transmission of influenza viruses from birds to humans. The fact that genetic reassortment between human and avian viruses has also been shown to occur in pigs in nature, had led to the hypothesis that the pandemic viruses of 1957 and 1968 may have been generated through the pig. More recent data, however, come to question these theories and hypotheses: (a)the direct transmission of the H5N1 and H7N7 avian influenza viruses from birds to humans in Southeastern Asia and The Netherlands, and (b) the presence of cellular receptors recognized preferentially by the haemagglutinin of avian influenza viruses in the human conjunctiva and ciliated respiratory epithelial cells, which support that avian influenza viruses can be transmitted in toto (without reassortment) to and between humans or that humans can be the mixing vessel themselves. Furthermore, there is no solid scientific evidence to prove that any influenza virus reassortants, that have originated in swine, have posed a risk for humans. There are three criteria (conditions) an influenza virus must fulfill in order to be characterized as a pandemic virus: (a) it must be a new virus against which humans are immunologically naive, (b) it must be able to replicate in humans causing severe disease, and (c) it must be efficiendy transmitted among humans, causing wide outbreaks. So far the H5N1 influenza virus only fulfills the first and second condition, and even though it has been sporadically infecting humans for over two years, it has not yet been able to fully adapt to it's new host. Compared to the human population that may have been exposed to the H5N1 influenza virus in Asia, the number of patients and fatalities due to the H5N1 virus is very small. So far, it appears that swine do not play an important role in the epidemiology of this specific virus. Experimental infections of swine with highly pathogenic H5N1 virus have shown that it does not replicate extensively in pigs. Additionally, extensive serological investigations in the swine population of Viet Nam, indicated that the H5N1 virus merely spread to a very small number (~0.25%) of contact animals within the epizootic regions. Nevertheless, it is critical to continue monitor ring pigs and studying the behavior and spread of influenza viruses in these species.


2018 ◽  
Vol 47 (6) ◽  
pp. 559-575 ◽  
Author(s):  
Abel Wade ◽  
Taïga Taïga ◽  
Mama Andre Fouda ◽  
Abari MaiMoussa ◽  
Feussom Kameni Jean Marc ◽  
...  

2004 ◽  
Vol 78 (18) ◽  
pp. 9954-9964 ◽  
Author(s):  
Diane J. Hulse ◽  
Robert G. Webster ◽  
Rupert J. Russell ◽  
Daniel R. Perez

ABSTRACT Although it is established that the cleavage site and glycosylation patterns in the hemagglutinin (HA) play important roles in determining the pathogenicity of H5 avian influenza viruses, some viruses exist that are not highly pathogenic despite possessing the known characteristics of high pathogenicity (i.e., their HA contains multiple basic amino acids at the cleavage site and has glycosylation patterns similar to that of the highly pathogenic H5 viruses). Currently little is known about the H5N1 viruses that fall into this intermediate category of pathogenicity. We have identified strains of H5N1 avian influenza viruses that have markers typical of high pathogenicity but distinctly differ in their ability to cause disease and death in chickens. By analyzing viruses constructed by reverse-genetic methods and containing recombinant HAs, we established that amino acids 97, 108, 126, 138, 212, and 217 of HA, in addition to those within the cleavage site, affect pathogenicity. Further investigation revealed that an additional glycosylation site within the neuraminidase (NA) protein globular head contributed to the high virulence of the H5N1 virus. Our findings are in agreement with previous observations that suggest that the activities of the HA and NA proteins are functionally linked.


2007 ◽  
Vol 88 (11) ◽  
pp. 3094-3099 ◽  
Author(s):  
Muhammad Mahmood Mukhtar ◽  
Sahibzada T. Rasool ◽  
Degui Song ◽  
Chengliang Zhu ◽  
Qian Hao ◽  
...  

Genetic analysis of all eight genes of two Nanchang avian influenza viruses, A/Duck/Nanchang/1681/92 (H3N8-1681) and A/Duck/Nanchang/1904/92 (H7N1-1904), isolated from Jiangxi province, China, in 1992, showed that six internal genes of H3N8-1681 virus and five internal (except NS gene) genes of H7N1-1904 virus were closely similar to A/Goose/Guangdong/1/96 (H5N1) virus, the first highly pathogenic avian influenza (HPAI) virus of subtype H5N1 isolated in Asia. The neuraminidase (NA) gene of Gs/Gd/1/96 had the highest genetic similarity with A/Duck/Hokkaido/55/96 (H1N1-55) virus. The haemagglutinin (HA) gene of Gs/Gd/1/96 virus might have originated as a result of mutation of H5 HA gene from A/Swan/Hokkaido/51/96 (H5N3-51)-like viruses. The PA gene of H5N3-51 virus had the highest similarity with Gs/Gd/1/96. This study explains the origin of first Asian HPAI H5N1 virus in Guangdong by the reassortment of Nanchang (close to Guangdong) and Hokkaido (Japan) (H1N1-55 and H5N3-51) viruses. Genetic characteristics of donor and recipient viruses were also studied.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting-Hsuan Chen ◽  
Ya-Lin Yang ◽  
Jia-Tsrong Jan ◽  
Chung-Chu Chen ◽  
Suh-Chin Wu

The highly pathogenic avian influenza (HPAI) H5N1 viruses with the capability of transmission from birds to humans have a serious impact on public health. To date, HPAI H5N1 viruses have evolved into ten antigenically distinct clades that could cause a mismatch of vaccine strains and reduce vaccine efficacy. In this study, the glycan masking and unmasking strategies on hemagglutinin antigen were used for designing two antigens: H5-dm/st2 and H5-tm/st2, and investigated for their elicited immunity using two-dose recombinant H5 (rH5) immunization and a first-dose adenovirus vector prime, followed by a second-dose rH5 protein booster immunization. The H5-dm/st2 antigen was found to elicit broadly neutralizing antibodies against different H5N1 clade/subclade viruses, as well as more stem-binding antibodies to inhibit HA-facilitated membrane fusion activity. Mice immunized with the H5-dm/st2 antigen had a higher survival rate when challenged with homologous and heterologous clades of H5N1 viruses. Mutant influenza virus replaced with the H5-dm/st2 gene generated by reverse genetics (RG) technology amplified well in MDCK cells and embryonated chicken eggs. Again, the inactivated H5N1-dm/st2 RG virus elicited more potent cross-clade neutralizing and anti-fusion antibodies in sera. Therefore, the H5N1-dm/st2 RG virus with the site-specific glycan-masking on the globular head and the glycan-unmasking on the stem region of H5 antigen can be used for further development of cross-protective H5N1 vaccines.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Chris Ka Pun Mok ◽  
Horace Hok Yeung Lee ◽  
Michael Chi Wai Chan ◽  
Sin Fun Sia ◽  
Maxime Lestra ◽  
...  

ABSTRACT A novel avian-origin influenza A/H7N9 virus infecting humans was first identified in March 2013 and, as of 30 May 2013, has caused 132 human infections leading to 33 deaths. Phylogenetic studies suggest that this virus is a reassortant, with the surface hemagglutinin (HA) and neuraminidase (NA) genes being derived from duck and wild-bird viruses, respectively, while the six “internal gene segments” were derived from poultry H9N2 viruses. Here we determine the pathogenicity of a human A/Shanghai/2/2013 (Sh2/H7N9) virus in healthy adult mice in comparison with that of A/chicken/Hong Kong/HH8/2010 (ck/H9N2) virus, highly pathogenic avian influenza (HPAI) A/Hong Kong/483/1997 (483/H5N1) virus, and a duck influenza A H7N9 virus of different genetic derivation, A/duck/Jiangxi/3286/2009 (dk/H7N9). Intranasal infection of mice with Sh2/H7N9 virus doses of 103, 104, and 105 PFU led to significant weight loss without fatality. This virus was more pathogenic than dk/H7N9 and ck/H9N2 virus, which has six internal gene segments that are genetically similar to Sh2/H7N9. Sh2/H7N9 replicated well in the nasal cavity and lung, but there was no evidence of virus dissemination beyond the respiratory tract. Mice infected with Sh2/H7N9 produced higher levels of proinflammatory cytokines in the lung and serum than did ck/H9N2 and dk/H7N9 but lower levels than 483/H5N1. Cytokine induction was positively correlated with virus load in the lung at early stages of infection. Our results suggest that Sh2/H7N9 virus is able to replicate and cause disease in mice without prior adaptation but is less pathogenic than 483/H5N1 virus. IMPORTANCE An H7N9 virus isolate causing fatal human disease was found to be more pathogenic for mice than other avian H9N2 or H7N9 viruses but less pathogenic than the highly pathogenic avian influenza virus (HPAI) H5N1. Similarly, the ability of Sh2/H7N9 to elicit proinflammatory cytokines in the lung and serum of mice was intermediate to ck/H9N2 and dk/H7N9 on the one hand and HPAI H5N1 on the other. These findings accord with the observed epidemiology in humans, in whom, as with seasonal influenza viruses, H7N9 viruses cause severe disease predominantly in older persons while HPAI H5N1 can cause severe respiratory disease and death in children and young adults.


2009 ◽  
Vol 83 (24) ◽  
pp. 13015-13018 ◽  
Author(s):  
Kyoko Shinya ◽  
Akiko Makino ◽  
Makoto Ozawa ◽  
Jin Hyun Kim ◽  
Yuko Sakai-Tagawa ◽  
...  

ABSTRACT Amino acids at positions 627 and 701 in the PB2 protein (PB2-627 and PB2-701, respectively) of avian influenza A viruses affect virus replication in some mammalian cells. Highly pathogenic H5N1 influenza viruses possessing mammalian-type PB2-627 were detected during the Qinghai Lake outbreak in 2005 and spread to Europe and Africa. Via a database search, we found a high rate of viral isolates from Ratitae, including ostrich, possessing mammalian-type PB2-627 or -701. Here, we report that H5N1 avian influenza viruses possessing mammalian-type amino acids in PB2-627 or -701 are selected during replication in ostrich cells in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document