scholarly journals Aerodynamic Flow Control of Axisymmetric Bluff Body by Coupled Wake Interactions

AIAA Journal ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 2992-3007 ◽  
Author(s):  
Thomas J. Lambert ◽  
Bojan Vukasinovic ◽  
Ari Glezer
2018 ◽  
Vol 59 (6) ◽  
Author(s):  
H. -J. Schmidt ◽  
R. Woszidlo ◽  
C. N. Nayeri ◽  
C. O. Paschereit
Keyword(s):  

2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Xingsi Han ◽  
Siniša Krajnović

The numerical study reported here deals with the passive flow control around a two-dimensional D-shaped bluff body at a Reynolds number of Re=3.6×104. A small circular control cylinder located in the near wake behind the main bluff body is employed as a local disturbance of the shear layer and the wake. 3D simulations are carried out using a newly developed very large eddy simulation (VLES) method, based on the standard k − ε turbulence model. The aim of this study is to validate the performance of this method for the complex flow control problem. Numerical results are compared with available experimental data, including global flow parameters and velocity profiles. Good agreements are observed. Numerical results suggest that the bubble recirculation length is increased by about 36% by the local disturbance of the small cylinder, which compares well to the experimental observations in which the length is increased by about 38%. A drag reduction of about 18% is observed in the VLES simulation, which is quite close to the experimental value of 17.5%. It is found that the VLES method is able to predict the flow control problem quite well.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 664 ◽  
Author(s):  
Mitsugu Hasegawa ◽  
Hirotaka Sakaue

A microfiber coating having a hair-like structure is investigated as a passive flow control device of a bluff body. The effect of microfiber length is experimentally studied to understand the impact of the coating on drag on a cylinder. A series of microfiber coatings with different lengths are fabricated using flocking technology and applied to various locations over the cylinder surface under the constant Reynolds number of 6.1 × 104 based on the diameter of the cylinder. It is found that the length and the location both play important roles in the drag reduction. Two types of drag reduction can be seen: (1) when the relative length of the microfiber, k/D, is less than 1.8%, and the coating is applied before flow separates over the cylinder; and (2) k/D is over 3.3%, and the coating is applied after the flow separation location on the cylinder. The maximum drag reduction for the former type is 59% compared to that from the cylinder without the microfiber coating. For the latter type, the maximum drag reduction is 27%.


Sign in / Sign up

Export Citation Format

Share Document