Turbulence Modeling in Hypersonic Turbulent Boundary Layers Subject to Convex Wall Curvature

AIAA Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Christian J. Lagares-Nieves ◽  
Jean Santiago ◽  
Guillermo Araya
Author(s):  
H. Hattori ◽  
Y. Nagano

Direct numerical simulations (DNS) of boundary layers with various thermal stratifications are carried out to investigate the turbulent structures of these flows. The present DNSs quantitatively provide the characteristics of thermally stratified turbulent boundary layers. In particular, the counter gradient diffusion phenomenon is found in a strong, stable stratified boundary layer. On the other hand, in order to adequately predict turbulent boundary layers with various thermal stratifications, an appropriate turbulence model should be employed in the calculation. Thus, using a database obtained by DNS, the strict assessment of turbulent heat transfer model is made so as to construct a reliable advanced turbulence model. The results of in-depth turbulent model evaluation are indicated, in which we have explored the prediction potential of the proposed nonlinear eddy diffusivity models for momentum and heat in both stable and unstable stratified boundary layers.


1996 ◽  
Vol 118 (2) ◽  
pp. 219-232 ◽  
Author(s):  
J. P. Johnston ◽  
K. A. Flack

Current information concerning three-dimensional turbulent boundary layers is discussed. Several topics are presented including (i) a detailed description of eleven experiments published since 1990. In nine cases cross flows are controlled by pressure gradients imposed from the freestream, but in two cases the cross flows are wall-shear-driven. The other topics include (ii) an examination of state of the art in measurement techniques; (iii) a look at some issues and ideas in turbulence modeling; and (iv) an introduction to new work on the visualization and description of quasicoherent structures (high/low-speed streaks and turbulent vortices) in three-dimensional turbulent boundary layers.


1973 ◽  
Vol 60 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Ronald M. C. So ◽  
George L. Mellor

Turbulent boundary layers along a convex surface of varying curvature were investigated in a specially designed boundary-layer tunnel. A fairly complete set of turbulence measurements was obtained.The effect of curvature is striking. For example, along a convex wall the Reynolds stress is decreased near the wall and vanishes about midway between the wall and the edge of a boundary layer where there exists a velocity profile gradient created upstream of the curved wall.


Sign in / Sign up

Export Citation Format

Share Document