Effects of Three-Dimensional Pressure Gradients on High-Speed Turbulent Boundary Layers

2021 ◽  
Author(s):  
Scott J. Peltier ◽  
Brian E. Rice ◽  
Ethan Johnson ◽  
Venkateswaran Narayanaswamy ◽  
Marvin E. Sellers
1996 ◽  
Vol 118 (2) ◽  
pp. 219-232 ◽  
Author(s):  
J. P. Johnston ◽  
K. A. Flack

Current information concerning three-dimensional turbulent boundary layers is discussed. Several topics are presented including (i) a detailed description of eleven experiments published since 1990. In nine cases cross flows are controlled by pressure gradients imposed from the freestream, but in two cases the cross flows are wall-shear-driven. The other topics include (ii) an examination of state of the art in measurement techniques; (iii) a look at some issues and ideas in turbulence modeling; and (iv) an introduction to new work on the visualization and description of quasicoherent structures (high/low-speed streaks and turbulent vortices) in three-dimensional turbulent boundary layers.


1969 ◽  
Vol 35 (4) ◽  
pp. 737-757 ◽  
Author(s):  
K. C. Brown ◽  
P. N. Joubert

This paper describes a floating-element skin friction meter which has been designed for use in adverse pressure gradients. The effects of secondary forces on the element, which arise from the pressure gradient, are examined in some detail. The limitations of various methods of measuring wall shear stress are discussed and the results from the floating element device are compared with measurements taken in a two-dimensional boundary layer using Preston tubes and velocity profiles. As it is planned to use the instrument later for direct measurements of the shear stress in three-dimensional boundary layers, the relevance of the instrument to this situation is also discussed.


1983 ◽  
Vol 27 (03) ◽  
pp. 147-157 ◽  
Author(s):  
A. J. Smits ◽  
N. Matheson ◽  
P. N. Joubert

This paper reports the results of an extensive experimental investigation into the mean flow properties of turbulent boundary layers with momentum-thickness Reynolds numbers less than 3000. Zero pressure gradient and favorable pressure gradients were studied. The velocity profiles displayed a logarithmic region even at very low Reynolds numbers (as low as Rθ = 261). The results were independent of the leading-edge shape, and the pin-type turbulent stimulators performed well. It was found that the shape and Clauser parameters were a little higher than the correlation proposed by Coles [10], and the skin friction coefficient was a little lower. The skin friction coefficient behavior could be fitted well by a simple power-law relationship in both zero and favorable pressure gradients.


Author(s):  
Christoph Wenzel ◽  
Johannes M. F. Peter ◽  
Björn Selent ◽  
Matthias B. Weinschenk ◽  
Ulrich Rist ◽  
...  

1966 ◽  
Vol 33 (2) ◽  
pp. 429-437 ◽  
Author(s):  
J. C. Rotta

A review is given of the recent development in turbulent boundary layers. At first, for the case of incompressible flow, the variation of the shape of velocity profile with the pressure gradient is discussed; also the temperature distribution and heat transfer in incompressible boundary layers are treated. Finally, problems of the turbulent boundary layer in compressible flow are considered.


Sign in / Sign up

Export Citation Format

Share Document