A Novel Design for Thin Film Smart Sensors on Complex Aero-Engine Surface for High Temperature Measurement

2021 ◽  
Author(s):  
Ziyi Xie ◽  
Franklin L. Duan
2020 ◽  
Vol 91 (7) ◽  
pp. 074901
Author(s):  
Bian Tian ◽  
Yan Liu ◽  
Zhongkai Zhang ◽  
Libo Zhao ◽  
Zhaojun Liu ◽  
...  

2015 ◽  
Vol 65 (5) ◽  
pp. 385 ◽  
Author(s):  
Manoj Kumar Sonker ◽  
M. L. Dewal

<p>Thermocouples have been extensively used for the measurement of temperature since the advent of seebeck effect. Numerous sensors have been developed for temperature measurement, yet measurement of high temperature flowing fluid has been a challenging task. For the measurement of static temperature the measuring device should travel with the fluid at the same speed without disturbing the flow, which is quite unrealistic. So indirect determination of static temperature of flowing fluid is done by using thermocouple exposed into the flowing fluid. Other sensors available for high temperature measurement may lead to problems like resistance in the flow path of fluid which changes the structural dynamics. Thin film thermocouple (TFTC) based on W-W26Re for super high temperature measurement has been investigated which can be used in missiles for surface temperature measurement of nozzle and rocket interior surface. TFTC does not cause disruption in the flow path with maintaining structural integrity. The W-W26Re thermocouple offers advantage of higher seebeck coefficient at high temperature i.e. above 750 K, and usability in vacuum, inert and hydrogen atmosphere. Zirconia Fiber has been proposed as insulation protection material over thermocouple. Modelling and simulation of the TFTC for the temperature range 300 K - 2900 K has been presented. FEA model using PDE has been presented to implement heat equation, current balance  quation, Gauss theorem and Neumann boundary condition. The expected voltage production on exposed temperature gradient has been studied.</p>


2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


Sign in / Sign up

Export Citation Format

Share Document