Fluid-structure Interaction Simulation using the High-order CFD Method with Application to Renewable Energy Harvesting

2021 ◽  
Author(s):  
Kan Liu ◽  
Meilin Yu ◽  
Weidong Zhu
2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Zhenglun Alan Wei ◽  
Zhongquan Charlie Zheng

This study investigates energy harvesting of a two-dimensional foil in the wake downstream of a cylinder. The foil is passively mobile in the transverse direction. An immersed boundary (IB) method with a fluid–structure interaction (FSI) model is validated and employed to carry out the numerical simulation. For improving numerical stability, this study incorporates a modified low-storage first-order Runge–Kutta scheme for time integration and demonstrates the performance of this temporal scheme on reducing spurious pressure oscillations of the IB method. The simulation shows the foil emerged in a vortical wake achieves better energy harvesting performance than that in a uniform flow. The types of the dynamic response of the energy harvester are identified, and the periodic response is desired for optimal energy harvesting performance. Last, the properties of vortical wakes are found to be of pivotal importance in obtaining this desired periodic response.


2021 ◽  
Vol 37 ◽  
pp. 216-229
Author(s):  
Yung Jeh Chu ◽  
Poo Balan Ganesan ◽  
Mohamad Azlin Ali

Abstract The dragonfly wings provide insights for designing an efficient biomimetic micro air vehicle (BMAV). In this regard, this study focuses on investigating the effect of the pterostigma weight loading and its spatial location on the forewings of dragonfly by using the fluid–structure interaction simulation. This study also investigates the effect of change in the wing elasticity and density on the wing performance. The forewing, which mimics the real dragonfly wing, is flat with a 47.5 mm span and a 0.4 mm thickness. The wing was set to cruise at 3 m/s with a constant flapping motion at a frequency of 25 Hz. This study shows that a small increase of pterostigma loading (11% of wing weight) at the tip of the wing significantly improves the lift to drag ratio, CL/CD, which has 129.16% increment in comparison with no loading. The lift to drag ratio depends on the pterostigma location, pterostigma loading, elastic modulus and density. The results of this study can be used as a reference in future BMAV wing optimization design.


Sign in / Sign up

Export Citation Format

Share Document