Relation between Cetane Number and the Ignition Delay of Jet Fuels

2022 ◽  
Author(s):  
Paxton W. Wiersema ◽  
Keunsoo Kim ◽  
Tonghun Lee ◽  
Eric Mayhew ◽  
Jacob Temme ◽  
...  
2016 ◽  
Vol 10 (1) ◽  
pp. 249-249
Author(s):  
Sylvester Abanteriba ◽  
Ulas Yildirim ◽  
Renee Webster ◽  
David Evans ◽  
Paul Rawson

2015 ◽  
Author(s):  
Kyungwook Min ◽  
Daniel Valco ◽  
Anna Oldani ◽  
Tonghun Lee

Ignition delay of category A and C alternative aviation fuels have been investigated using a rapid compression machine (RCM). Newly introduced alternative jet fuels are not yet comprehensively understood in their combustion characteristics. Two of the category C fuels that will be primarily investigated in this study are Amyris Farnesane and Gevo Jet Fuel Blend. Amyris direct sugar to hydrocarbon (DSHC) fuel (POSF 10370) come from direct fermentation of bio feedstock sugar. Amyris DSHC is mainly composed of 2,6,10-trymethly dodecane, or farnesane. Gevo jet blend stock fuel is alcohol to jet (ATJ) fuel (POSF 10262) produced from bio derived butanol. Gevo jet blend stock is composed with iso-dodecane and iso-cetane, and has significantly low derived cetane number of 15. The experimental results are compared to combustion characteristics of conventional jet A fuels, including JP-8. Ignition delay, the important factor of auto ignition characteristic, is evaluated from pressure trace measured from the RCM at University of Illinois, Urbana-Champaign. The measurements are made at compressed pressure 20bar, intermediate and low compressed temperature, and equivalence ratio of unity and below. Direct test chamber charge method is used due to its reliable reproducibility of results. Compared to category A fuels, different combustion characteristics has been observed from category C fuels due to their irregular chemical composition.


Author(s):  
Ihab Ahmed ◽  
Lukai Zheng ◽  
Emamode A. Ubogu ◽  
Bhupendra Khandelwal

Burning leaner is an effective way to reduce emissions and improve efficiency. However, this increases the instability of the combustion and hence, increases the tendency of the flame to blowout. On the other hand, the ignition delay of a jet fuel is a crucial factor of the instability feedback loop. Shorter ignition delay results in faster feedback loop, and longer ignition delay results in slower feedback loop. This study investigates the potential effect of ignition delay on the lean blowout limit of a gas turbine combustion chamber. At the Low Carbon Combustion Centre of The University of Sheffield, a range of tests were carried out for a range of jet fuels on a Rolls-Royce Tay combustor rig. The ignition delay for each fuel was tested using Advanced Fuel Ignition Delay Analyser (AFIDA 2805). Lean blowout tests (LBO) was conducted on various air flows rates. High speed imaging was recorded using a high speed camera to give further details of the flame behavior near blowout limit for various fuels. The instability level was observed using the pressure, vibration and acoustic fluctuation. This paper presents results from an experimental study performed on a small gas turbine combustor, comparing Lean Blowout limit of different conventional, alternative and novel jet fuels with various ignition delay characteristics. It was observed that at higher cetane number, the blowout is improved remarkably. The Ignition plays an important role in determining the average instability level, and as result determines the Lean Blowout limit of a fuel.


2016 ◽  
Vol 9 (3) ◽  
pp. 703-711
Author(s):  
Sylvester Abanteriba ◽  
Ulas Yildirim ◽  
Renee Webster ◽  
David Evans ◽  
Paul Rawson

Author(s):  
Yu Wang ◽  
Yi Cao ◽  
David F. Davidson ◽  
Ronald K. Hanson

Author(s):  
P. Gokulakrishnan ◽  
M. S. Klassen ◽  
R. J. Roby

Ignition delay times of a “real” synthetic jet fuel (S8) were measured using an atmospheric pressure flow reactor facility. Experiments were performed between 900 K and 1200 K at equivalence ratios from 0.5 to 1.5. Ignition delay time measurements were also performed with JP8 fuel for comparison. Liquid fuel was prevaporized to gaseous form in a preheated nitrogen environment before mixing with air in the premixing section, located at the entrance to the test section of the flow reactor. The experimental data show shorter ignition delay times for S8 fuel than for JP8 due to the absence of aromatic components in S8 fuel. However, the ignition delay time measurements indicate higher overall activation energy for S8 fuel than for JP8. A detailed surrogate kinetic model for S8 was developed by validating against the ignition delay times obtained in the present work. The chemical composition of S8 used in the experiments consisted of 99.7 vol% paraffins of which approximately 80 vol% was iso-paraffins and 20% n-paraffins. The detailed kinetic mechanism developed in the current work included n-decane and iso-octane as the surrogate components to model ignition characteristics of synthetic jet fuels. The detailed surrogate kinetic model has approximately 700 species and 2000 reactions. This kinetic mechanism represents a five-component surrogate mixture to model generic kerosene-type jets fuels, namely, n-decane (for n-paraffins), iso-octane (for iso-paraffins), n-propylcyclohexane (for naphthenes), n-propylbenzene (for aromatics) and decene (for olefins). The sensitivity of iso-paraffins on jet fuel ignition delay times was investigated using the detailed kinetic model. The amount of iso-paraffins present in the jet fuel has little effect on the ignition delay times in the high temperature oxidation regime. However, the presence of iso-paraffins in synthetic jet fuels can increase the ignition delay times by two orders of magnitude in the negative temperature (NTC) region between 700 K and 900 K, typical gas turbine conditions. This feature can have a favorable impact on preventing flashback caused by the premature autoignition of liquid fuels in lean premixed prevaporized (LPP) combustion systems.


Author(s):  
Tak W. Chan ◽  
Pervez Canteenwalla ◽  
Wajid A. Chishty

The effects of altitude and fuel composition on gaseous and particle emissions from a turbojet engine were investigated as part of the National Jet Fuels Combustion Program (NJFCP) effort. Two conventional petroleum based jet fuels (a “nominal” and a “worst-case” jet fuel) and two test fuels with unique characteristics were selected for this study. The “worst-case” conventional jet fuel with high flash point and viscosity resulted in reduced combustion efficiency supported by the reduced CO2 emissions and corresponding increased CO and THC emissions. In addition, increased particle number (PN), particle mass (PM), and black carbon (BC) emissions were observed. Operating the engine on a bimodal fuel, composed of heavily branched C12 and C16 iso-paraffinic hydrocarbons with an extremely low cetane number did not significantly impact the engine performance or gaseous emissions but significantly reduced PN, PM, and BC emissions when compared to other fuels. The higher aromatic content and lower hydrogen content in the C-5 fuel were observed to increase PN, PM, and BC emissions. It is also evident that the type of aromatic hydrocarbons has a large impact on BC emissions. Reduction in combustion efficiency resulted in reduced CO2 emissions and increased CO and THC emissions from this engine with increasing altitudes. PN emissions were moderately influenced by altitude but PM and BC emissions were significantly reduced with increasing altitude. The reduced BC emissions with increasing altitude could be a result of reduced combustion temperature which lowered the rate of pyrolysis for BC formation, which is supported by the NOx reduction trend.


Author(s):  
M M Roy

This study investigated the effect of n-heptane and n-decane on exhaust odour in direct injection (DI) diesel engines. The prospect of these alternative fuels to reduce wall adherence and overleaning, major sources of incomplete combustion, as well as odorous emissions has been investigated. The n-heptane was tested as a low boiling point fuel that can improve evaporation as well as wall adherence. However, the odour is a little worse with n-heptane and blends than that of diesel fuel due to overleaning of the mixture. Also, formaldehyde (HCHO) and total hydrocarbon (THC) in the exhaust increase with increasing n-heptane content. The n-decane was tested as a fuel with a high cetane number that can improve ignition delay, which has a direct effect on wall adherence and overleaning. However, with n-decane and blends, the odour rating is about 0.5-1 point lower than for diesel fuel. Moreover, the aldehydes and THC are significantly reduced. This is due to less wall adherence and proper mixture formation.


Sign in / Sign up

Export Citation Format

Share Document