scholarly journals Baseline Flight Control System for High Altitude Long Endurance Aircraft

2022 ◽  
Author(s):  
Christian Weiser ◽  
Daniel Ossmann
Author(s):  
Jihui Pan ◽  
Shengbing Zhang ◽  
Danghui Wang

With the development of high altitude long endurance UAV, Flight Control System in high altitude long endurance UAV must have so strong failure tolerance ability that it can improve the whole system reliability. Using redundancy technique can extremely improve failure tolerance and reliability of flight control system. Compared among civil and military aircraft and UAV, the architectures and redundancy management of fault-tolerant flight control computer (FCC)systems are introduced. Then, give a new architectures and redundancy management of fault-tolerant FCC systems for high altitude long endurance UAV. The experimental results show that the system meets the UAV's demand of high reliability, low cost and good expansibility, maximize the utilization of system resources and effectively improve the fault tolerant capability of airborne computer and the reliability of sensor subsystem. With fault injection test method, the results show that the fault tolerant methods improve fault detection rate and fault isolation rate.


2011 ◽  
Vol 128-129 ◽  
pp. 142-145
Author(s):  
Yong Hua Fan ◽  
Xin Li ◽  
Yun Feng Yu

The high altitude airship can not have desired performance to control the altitude rapidly and accurately when the elevator or ancillary air bursa charge or deflation is used only, because the elevator has little efficiency when the velocity is low and auxiliary air bursas charge or deflation control is very slow. It is present a method to design flight control system for a high altitude airship using auxiliary air bursas charge or deflation and elevator combination control. This combination control scheme is that the ancillary air bursa and elevator are also used to control the airship attitude to get large raise velocity and the ancillary air bursa control is used to adjust the airship altitude for suspension. In this paper, a high altitude airship model with compound control of elevator and ancillary air bursa charge and deflation is given firstly. Then the combination controller is designed by using fuzzy self-tuning control. Finally, it has been proved by simulation that the flight control system has desirable performance and the compound control scheme is feasible.


Sign in / Sign up

Export Citation Format

Share Document