scholarly journals Improvement of the technology for controlling the parameters of the lubricating system of the D-245 diesel engine

Author(s):  
S.V. Timokhin ◽  
◽  
Yu.V. Rodionov ◽  
I.I. Kurbakov ◽  
◽  
...  

А significant factor affecting the reliability of the internal combustion engine and its technical and Economic indicators is the efficiency of the lubrication system. When the standard oil supply is applied, semiliquid friction occurs between the contacting parts, in which the parts are not completely separated by a layer of oil. However, with this friction, the required durability of components and parts with heat removal is guaranteed. The performance of the engine lubrication system is determined by the state of its elements (coarse and fine filters, oil radiator and pump, valves), as well as the quality of oil, its level in the internal combustion engine crankcase and temperature. In domestic internal combustion engines, the minimum oil level in the crankcase is controlled, but in operation there are situations when the oil level exceeds its maximum permissible value. This situation occurs when coolant or fuel enters the lubrication system. Coolant can get into the oil if the cylinder head gaskets, sleeve o-rings, or cracks in the cylinder head and block are broken. Top-Livo can enter the oil through worn and damaged parts of the fuel equipment (gas pump diaphragm, fuel pump plunger pairs, etc.). These liquids sharply degrade the quality of the oil and increase the wear of internal combustion engine parts, and the standard singlelevel indicator will not give the driver operational information about the malfunction. In connection with the above, the purpose of this work is to improve the technology for monitoring the technical condition of the internal combustion engine lubrication system on the example of the d-245 diesel engine and its modifications, which are widely used in GAZ (GAZ-3309), ZIL (ZIL-5301), MAZ (MAZ Zubrenok), PAZ buses (PAZ-3205), MTZ tractors (MTZ — 100, 892, 1020), agricultural and construction equipment.by developing and implementing a built — in device for monitoring the minimum and maximum oil levels in the crankcase, as well as its temperature. The scientific novelty of the work is due to the use of new circuit and technical solutions, as well as the original algorithm of the sensor operation developed by the authors, based on the use of switching laws of reed switches with normally closed and normally open contacts, the operation of which is spaced over time and controlled oil levels. Block diagram of the proposed device comprises a multifunction sensor level and oil temperature, including sensors of the mi-minimum and increased levels of engine oil in the crankcase of the engine and its temperature, the operation mode switch signal cooling temperature-edusei fluid and engine oil, the first and second voltage сomparators, indicator lights, buzzer, switch power supply, voltage regulator and regular temperature sensor coolant. The use of the developed device significantly increases the reliability and convenience of monitoring one of the most important indicators of internal combustion engines-the oil level in the crankcase, which will avoid significant engine damage. As a result of further research, it is planned to develop the device design, conduct laboratory studies of the developed multifunctional sensor in order to determine the dependence of its resistance on the temperature at the normal level of engine oil in the measuring flask, as well as determine the actual values of the developed sensor response heights at the lower and upper levels.

Author(s):  
Maxim Igorevich Tarasov ◽  
Georgy Alexandrovich Gauk ◽  
Liudmila Anatolievna Semeniuk

The results of modeling the impact of oil burning on the condition of the ship forced trunk piston diesel engine when using lubricants with different operating properties. The dependence of wear rate on oil fume, the quality of used lubricants and marine diesel forcing is obtained by modeling wear using the theory of planning experiments. The area of minimal wear has been determined. There has been detected the most efficient waste oil providing favorable conditions for resource-saving operation of the internal combustion engine. It is inferred that reduction of engine oil fume changes the main parameters of its aging. At the same time, the intensity of oil aging in main directions and of engine wear reduce from 0.75 to 2.25 g/(kW∙h), whereas the fume increases. Its further increase is accompanied by an increase in the rate of oil aging and engine wear. The detected "fracture" depending on И( g y) after passing the border g yopt = 2.25-2.5 g/(kW∙h) is stipulated by different ratio of oil exchange in the lubrication system and the ingress of gases into the crankcase. There has been determined the degree of oil burning, at which sludging and lacquer formation of the internal combustion engine is least intense. The smallest carbon deposits on pistons and in the crankcase of the engine can be observed when the diesel engine is operating in the zone of optimal carbonation. Experimentally, the dependence of tribotechnical properties, in particular, wear of insoluble products of oil aging has been detected at different degrees of oil burning. It is revealed that these characteristics also depend on the quality of the used fuels and lubricants and the conditions of formation and turnover of the oil film on the mirror of the cylinder, the thermal effect on it of the engine workflow. The result of simulation is the prediction of resource-saving operation of marine trunk diesel engines by maintaining oil fume at the optimal level.


Author(s):  
Толмачев ◽  
D. Tolmachev ◽  
Голубенко ◽  
Natalya Golubenko

The article describes some of chemmotology processes in systems: engine oil – elements of internal combustion engines. Motor oil is regarded as an important element in the construction of an internal combustion engine, and it is necessary to make quantitative description of its condition which changing over time for its operability forecasting. In connection with the increasing number of vehicles with gas engines, the topics of necessity of special engine oils use for the gas internal combustion engine and of monitoring of their quality indicators are mentioned


2020 ◽  
pp. 10-16
Author(s):  
S.A. Belov ◽  
I.V. Busin

The article reviews four existing technologies for replacing engine oil and a method for determining its suitability for improving economic efficiency. It is established that the oil is replaced according to the need in accordance with the defect indicators. This technology of oil condition is characterized by a more complete use of its resource. The frequency of replacement is determined by the indicators of condition, which is monitored by special sensors built into the engine lubrication system. However, the difficulty of using this technology is due to the lack of high-quality devices for monitoring the state of running engine oil in the engine.


2019 ◽  
Vol 26 (01) ◽  
pp. 157-162
Author(s):  
Davaasuren G ◽  
Gantulga G

It is vitally important for vehicle users that are to study the operating regime that may negative effect to the operation of the engine, to reduce its effect, to maintain the engine's reliability in accordance with the specific operating conditions. Quality of lubrication is one of the main factors that are improving of reliability and operational efficiency for any machinery their spare parts. So this paper presents to optimize of oil change intervals and to determine of wear rating of spare parts by content of metal particles in the internal combustion engine used oil. Дотоод шаталтат хөдөлгүүрийн тос солих хугацааг оновчлох нь Хураангуй:  Машин ашиглагчдын хувьд тухайн хөдөлгүүрийн ажиллагаанд сөрөг нөлөө үзүүлэх  ашиглалтын горимыг судалж, түүний хор нөлөөг багасгах болон ашиглалтын өвөрмөц  нөхцөлд тохируулан хөдөлгүүрийн найдварт ажиллагааг ханган зөв, ашигтай ажиллуулах  чадвартай байх нь асар их ач холбогдолтой юм. Аливаа машин техник , тэдгээрийн агрегат,  зангилаа эд ангийн удаан эдлэхүй, найдвартай ажиллагааг хангах, ашиглалтын үр ашгийг  дээшлүүлэх гол хүчин зүйлүүдийн нэг нь тосолгооны чанар байдаг учраас дотоод шаталтат  хөдөлгүүрийн ашигласан тосон дахь металлын агууламжыг илрүүлж, эд ангийн элэгдлийн  явцыг тодорхойлон, тос солих хугацааг оновчлох асуудлыг судалгааны хүрээнд авч үзлээ.  Түлхүүр үг: Хөдөлгүүрийн ашигласан тосны шинжилгээ, металл хольц, тосны бохирдол,  тортог, элэгдлийн элементийн хязгаар 


2020 ◽  
Vol 6 (2) ◽  
pp. 146-151
Author(s):  
Ihor Holovach ◽  
◽  
Lidiia Kasha ◽  
Ivan Hudzii

The article analyses the modern lubrication systems for internal combustion engines. Systems with mechanical drive components that contain mechanical and electronic components have been found to have a number of disadvantages. In particular, when the internal combustion engine is started cold, when the viscosity of the oil is high, the hydrodynamic resistance characteristic rises sharply, which leads to high pressure at low speeds and the drive requires low pump speeds. Again, the increase in oil temperature causes a decrease in viscosity, the hydrodynamic resistance characteristic becomes flatter. This, in turn, reduces the pressure in the lubrication system and requires an increase in pump speed in order to keep the pressure constant. Based on the analysis, the requirements for lubrication systems are formulated and a separate lubrication system with forced oil supply is proposed in this paper. For the drive of pump lubrication system of the internal combustion engine, a switched reluctance motor is proposed and calculated. Such motor by its qualities is one of the most useful in this type of systems.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


2021 ◽  
Vol 4 (30) ◽  
pp. 99-105
Author(s):  
A. V. Summanen ◽  
◽  
S. V. Ugolkov ◽  

This article discusses the issues of assessing the technical condition of the camshaft, internal combustion engine. The necessary parameters for assessing the technical condition of the engine camshaft have been determined. How and how to measure and calculate this or that parameter is presented in detail. Methods for calculating the parameters are presented. A scheme and method for measuring neck wear, determining the height of the cam, determining the beating of the central journal of the camshaft are proposed. The main defects of the camshafts are presented. The issues of the influence of these parameters on the operability of the camshaft and the internal combustion engine as a whole are considered.


2021 ◽  
pp. 13-20
Author(s):  

The prospects of using the gas-static suspension of the internal combustion engine piston in transport vehicles and power plants are considered. The diagram of the piston and the method for calculating the stiffness and bearing capacity of the gas layer surrounding the piston are presented, as well as the results of experiments that showed the relevance of this method. The possibility of gas and static centering of the engine piston is confirmed. Keywords: internal combustion engine, piston, gasstatic suspension, stiffness, bearing capacity, gas medium. [email protected]


2019 ◽  
pp. 146808741989358 ◽  
Author(s):  
Mostafa A ElBahloul ◽  
ELsayed S Aziz ◽  
Constantin Chassapis

Fuel conversion efficiency is one of the main concerns in the field of internal combustion engine systems. Although the Otto cycle delivers the maximum efficiency possible in theory, the kinematics of the slider–crank mechanism of the conventional internal combustion engines makes it difficult to reach this level of efficiency in practice. This study proposes using the unique hypocycloid gear mechanism instead of the conventional slider–crank mechanism for the internal combustion engines to increase engine efficiency and minimize frictional power losses. The hypocycloid gear mechanism engine’s kinematics provides the means for the piston-rod assembly to reciprocate in a straight-line motion along the cylinder axis besides achieving a nonlinear rate of piston movement. As a result, this characteristic allows for a true constant-volume combustion, which in turn would lead to higher work output. An in-cylinder gas volume change model of the hypocycloid gear mechanism engine was developed and incorporated into the thermodynamic model for the internal combustion engine cycle. The thermodynamic model of the hypocycloid gear mechanism engine was developed and simulated using MATLAB/Simulink software. A comparison between the conventional engine and the hypocycloid gear mechanism engine in terms of engine performance characteristics showed the enhancements achieved using hypocycloid gear mechanism for internal combustion engine applications. The hypocycloid gear mechanism engine analysis results indicated higher engine efficiency approaching that of the Otto cycle.


Sign in / Sign up

Export Citation Format

Share Document