Analysis of Interval Pressure Transient Test IPTT Performed in Oil Reservoir with Connected Transition Zone and Water Aquifer

2020 ◽  
Author(s):  
Aykut Atadeger ◽  
Ihsan Murat Gok
2014 ◽  
Author(s):  
S.. Paul ◽  
R.. Tapia ◽  
J.A.. A. Arias-Correa

Abstract Acquisition of reservoir information from exploration campaigns in offshore oil reservoirs is a continuous challenge in today's operations. Reservoir fluid properties and reservoir parameters characterization are fundamental for the accurate reservoir description for field planning and facilities design. With the aid of new technology, data of the highest quality can be obtained while the well is being drilled. This data is a key input to the development plans for the area. For an exploration well in an offshore Trinidad and Tobago oil field, in a reservoir of mainly unconsolidated sandstones with medium oil, the main objective was to acquire early and quick identification of the oil prospect for planning appraisal wells. A wireline formation tester (WFT) dual-packer module was deployed to perform an interval pressure transient test (IPTT), also known as a mini-drillstem test (mini-DST), at the interval of interest for assessing key reservoir parameters such as vertical and horizontal permeability, damage skin, and reservoir pressure, among others, in the near-wellbore domain, in addition to fluid sampling. Downhole fluid analysis (DFA) was performed to identify the reservoir fluid properties including oil and water fraction, fluid composition, gas/oil ratio, density, viscosity, fluorescence, reflectance, and resistivity at multiple depths in real time. Also, the real-time insitu fluid characterization allowed making decisions about where and when to take the samples in an optimal amount of time. Additionally, a single-probe wireline formation tester was used to take fluid samples and to obtain a single-point formation pressure, used for determining pressure gradient. DFA was combined with pressure profiles to improve the determination of zonal connectivity across the reservoir. The combination of IPTT and real time DFA characterization was applied at multiple depths and resulted in an improved understanding of oil reservoir, as well as lessons learned about methodology and applications and recommendations for future operations.


2021 ◽  
Author(s):  
David Craig ◽  
Thomas Blasingame

Abstract All transient test interpretation methods rely on or utilize diagnostic plots for the identification of wellbore or fracture storage distortion, flow regimes, and other parameters (e.g., minimum horizontal stress). Although all "test" interpretations of interest are transient test data (i.e., those involving an "event"), the associated diagnostic plots are not interchangeable between such tests. The objective of this work is to clearly define the appropriate diagnostic plot(s) for each type of transient test. The work applies the appropriate transient test theory to demonstrate the applicability of each diagnostic plot along with clearly defining the characteristic features that make a given plot "diagnostic." For pressure transient testing, the material is largely a review, but for rate transient tests and diagnostic fracture-injection/falloff tests, new ideas are introduced and documented to justify appropriate diagnostic plots. Data examples are provided for illustration and application. In general, pressure transient test diagnostic plots are not misused, but the same cannot be said for diagnostic fracture-injection/falloff tests (or DFITs) where it is common to ascribe flow regimes and/or draw other erroneous conclusions based on observations from an inappropriately constructed or interpretated diagnostic plot. The examples provided illustrate both the correct diagnostic plot and interpretations, but also illustrate how data can be easily misinterpreted in common practice.


2016 ◽  
pp. 7-10
Author(s):  
Ya. O. Antipin

The author suggests and describes the most optimal, reliable method for modeling saturation of the productive oil reservoirs The method takes into account the impact of capillary forces in porous media, water-oil transition zone. This method most fully meets the modern requirements of threedimensional geological and hydrodynamic modeling.


2012 ◽  
Author(s):  
Prasanna Kumar Tellapaneni ◽  
Sourabh Shukla ◽  
Richard Robert Jackson ◽  
James Dunlap ◽  
Harshad Dixit

2014 ◽  
Author(s):  
Davoud Bardal ◽  
Melanie Sabrina Trim ◽  
Reynaldo Tapia ◽  
Jose Abraham Arias-Correa ◽  
Sasha M. Baptista-Parra

Sign in / Sign up

Export Citation Format

Share Document