The effect of seaweed extract as an alternative to zinc oxide diets on growth performance, nutrient digestibility, and fecal score of weaned piglets

2012 ◽  
Vol 90 (suppl_4) ◽  
pp. 224-226 ◽  
Author(s):  
P. McAlpine ◽  
C. J. O'Shea ◽  
P. F. Varley ◽  
B. Flynn ◽  
J. V. O'Doherty
2021 ◽  
Vol 12 (7) ◽  
pp. 2962-2971
Author(s):  
Yuheng Luo ◽  
Jun He ◽  
Hua Li ◽  
Cong Lan ◽  
Jingyi Cai ◽  
...  

This study was conducted to compare the effect of raw (WB) or mixed fungi-fermented wheat bran (FWB) on the growth, nutrient digestibility and intestinal health in weaned piglets.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2030
Author(s):  
Anna Szuba-Trznadel ◽  
Anna Rząsa ◽  
Tomasz Hikawczuk ◽  
Bogusław Fuchs

The aim of this study was to evaluate the effect of zinc (Zn) supplementation in different commercial forms on the growth performance, health status, and Zn balance of weaners in field conditions. The animals were fed pre-starter (from the 28th to 47th day of life) and starter (from the 48th to 74th day of life) mixtures differing in Zn form and concentration. Group I was given ZnSO4 at 150 mg kg−1; Group II received pre-starter zinc oxide (ZnO) at 3000 mg kg−1 and starter at 150 mg kg−1; and Group III was given 150 mg kg−1 of zinc oxide nanoparticles (nZnO). We found that the average daily gain in Group I was significantly lower, compared to Groups II and III. A commonly accepted level of Zn (150 mg kg−1) as nZnO can be recommended, instead of therapeutic doses of Zn preparations with the same efficiency. Moreover, a lower level of Zn in the diet can prevent the excessive accumulation of this element in waste and, thus, reduce environmental damage.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2104
Author(s):  
Qi Wang ◽  
Jiafu Ying ◽  
Peng Zou ◽  
Yuanhao Zhou ◽  
Baikui Wang ◽  
...  

At present, the widespread use of high-dose zinc oxide and antibiotics to prevent post-weaning diarrhea (PWD) in piglets has caused serious environmental problems. To solve this problem, we studied the effect of HNa as a substitute for zinc oxide (ZnO) and antibiotics on the growth performance, immune status, and antioxidant capacity of piglets. Seventy-two weaned piglets (body weight = 7.42 ± 0.85 kg, 26-d-old) were distributed in a randomized 2 × 3 factorial design (two sexes and three treatments) with six replicates of four piglets each. The three treatments were the control diet (basic diet), HNa diet (basic diet + 2000 mg/kg sodium humate), and ZoA group (basic diet + 1600 mg/kg zinc oxide + 1000 mg/kg oxytetracycline calcium). ANOVA and Chi-square tests were applied to compare the means (p < 0.05) between treatments. The results showed that body weight at 16 and 30 d and the average daily gain of piglets fed with HNa or ZoA were significantly higher (p < 0.05) than the control group. Supplementing HNa or ZoA significantly increased (p < 0.05) the level of immunoglobulin M and G, and reduced (p < 0.05) the concentration of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukins IL-6 and IL-1β, myeloperoxidase (MPO), and diamine oxidase (DAO). Furthermore, dietary HNa or ZnO significantly reduced (p < 0.05) the level of total antioxidant capacity (T-AOC) and malondialdehyde (MDA) compared with the control group. ZoA treatment showed an upward trend of IgA level and a downward trend of the concentration of lipopolysaccharide (LPS) and catalase (CAT). Overall, the study demonstrated that the addition of HNa in the diet partially replaced antibiotics and ZnO to improve the growth performance, immune function, and antioxidant capacity of weaned piglets, and maintained a good preventive effect on piglet diarrhea.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1048
Author(s):  
Zhenyu Zhang ◽  
Zeqiang Li ◽  
Hua Zhao ◽  
Xiaoling Chen ◽  
Gang Tian ◽  
...  

Although water is one of the most important nutrients and is essential for various physiological processes within the body, it does not receive adequate consideration when ensuring optimal nutrition and growth performance in piglets. This study was conducted to investigate the effects of drinking water temperature (DWT) and flow rate (DWF) on growth performance, nutrient digestibility and cecum microflora in weaned piglets during cold weather. Sixty-four piglets with an average body weight of 8.60 ± 0.5 kg were allotted into four groups with four replicates in each group and four pigs in each replicate. The DWT and DWF were set for each group as follows: (1) 13 °C + 300 mL/min, (2) 13 °C + 700 mL/min, (3) 30 °C + 300 mL/min and (4) 30 °C + 700 mL/min, respectively. All groups were fed the same diet during the 28 d trial. The body weight at day 0 and day 29, as well as daily feed intake, were recorded. Diarrhea severity was assessed every day. Fresh fecal samples were collected for four consecutive days at the end of the experiment for the digestibility test. Cecum content was collected after sacrifice for microbial composition analysis. The results indicated that: (1) DWT at 30 °C promoted the average daily gain (ADG) of weaned piglets considerably (p = 0.043) and decreased feed to weight ratio when compared with DWT at 13 °C (p = 0.045). DWF had no substantial effect on the growth performance of piglets (p > 0.05). (2) The 30 °C DWT groups had higher apparent digestibility of crude protein, crude fat and energy than the 13 °C DWT groups (p < 0.05), while DWF had no significant effect on the apparent digestibility of nutrients (p > 0.05). (3) DWT at 30 °C increased the Bacteroidetes abundance and decreased the Proteobacteria abundance in cecum digesta. The change in these two factors may be related to a decrease in diarrhea and the improvement of growth performance. Different DWF had no substantial effect on the cecum microbial structure. To sum up, providing a DWT of 30 °C to weaned piglets in cold weather reduced the abundance of harmful bacteria in the cecum and improved the apparent nutrient digestibility, which is beneficial for maintaining a healthy intestinal microenvironment and promoting growth performance. A lower DWF of 300 mL/min had no adverse effect on growth performance. Therefore, a combination of 30 °C + 300 mL/min is recommended for weaned piglets during cold weather for the consideration of animal welfare and production efficiency.


2019 ◽  
Vol 97 (12) ◽  
pp. 4810-4821 ◽  
Author(s):  
Bocheng Xu ◽  
Luoyi Zhu ◽  
Jie Fu ◽  
Zhi Li ◽  
Yizhen Wang ◽  
...  

Abstract As an alternative to antimicrobial growth promoters, fermented feed (FF) has been continuously developed for two decades; however, its effects on feed, performance, digestibility, and meat quality of pigs have yet to be systematically and comprehensively evaluated. This study aimed to (i) quantitatively evaluate the effects of fermentation on nutritional components of feed stuffs; (ii) quantitatively evaluate the effects of FF on pig growth performance, digestibility, and meat quality; and (iii) explore the dose–effect relationship. From PubMed and Web of Science (searched range from January 1, 2000 to April 4, 2019), we collected 3,271 articles, of which 30 articles (3,562 pigs) were included in our meta-analysis. Our analysis revealed that fermentation significantly increased the CP content in feed (P &lt; 0.05). For weaned piglets and growing pigs, FF significantly improved ADG, G:F, DM digestibility, N digestibility, and energy digestibility (P &lt; 0.05). However, compared with the basal diet, FF had no significant effects on growth performance and nutrient digestibility in finishing pigs (P &gt; 0.05). In the subgroup analyses, fermented ingredients increased the growth performance of weaned piglets and growing pigs, and fermented additives promoted the growth of pigs at all stages. The dose–effect analysis confirmed that the optimal doses of fermented ingredients and additives were 8% and 0.15%, respectively. Furthermore, FF had beneficial impacts on meat quality through increased lightness, redness, marbling and flavor and reduced drip loss (P &lt; 0.05). In conclusions, FF improved growth performance and meat quality primarily due to its positive effects on nutritive value and utilization.


Sign in / Sign up

Export Citation Format

Share Document