scholarly journals COMPRESSIVE SENSING SFGPR IMAGING ALGORITHM BASED ON SUBSPACE PROJECTION GROUND CLUTTER SUPPRESSION

2016 ◽  
Vol 47 ◽  
pp. 87-97 ◽  
Author(s):  
Yanpeng Sun ◽  
Xiaodan Lu ◽  
Shi Zhang
2014 ◽  
Vol 31 (10) ◽  
pp. 2049-2066 ◽  
Author(s):  
Sebastián M. Torres ◽  
David A. Warde

Abstract Radar returns from the ground, known as ground clutter, can contaminate weather signals, often resulting in severely biased meteorological estimates. If not removed, these contaminants may artificially inflate quantitative precipitation estimates and obscure polarimetric and Doppler signatures of weather. A ground-clutter filter is typically employed to mitigate this contamination and provide less biased meteorological-variable estimates. This paper introduces a novel adaptive filter based on the autocorrelation spectral density, which is capable of mitigating the adverse effects of ground clutter without unnecessarily degrading the quality of the meteorological data. The so-called Clutter Environment Analysis using Adaptive Processing (CLEAN-AP) filter adjusts its suppression characteristics in real time to match dynamic atmospheric environments and meets Next Generation Weather Radar (NEXRAD) clutter-suppression requirements.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xuwang Zhang ◽  
Songtao Lu ◽  
Jinping Sun ◽  
Wei Shangguan

This paper proposes a spectrum zoom processing based target detection algorithm for detecting the weak echo of low-altitude and slow-speed small (LSS) targets in heavy ground clutter environments, which can be used to retrofit the existing radar systems. With the existing range-Doppler frequency images, the proposed method firstly concatenates the data from the same Doppler frequency slot of different images and then applies the spectrum zoom processing. After performing the clutter suppression, the target detection can be finally implemented. Through the theoretical analysis and real data verification, it is shown that the proposed algorithm can obtain a preferable spectrum zoom result and improve the signal-to-clutter ratio (SCR) with a very low computational load.


Author(s):  
Xianyang Hu ◽  
Changzheng Ma ◽  
Xingyu Lu ◽  
Tat Soon Yeo

Sign in / Sign up

Export Citation Format

Share Document