scholarly journals Radiation Characteristics of Borosilicate Glass Containing High-Level Waste

2020 ◽  
Vol 12 (3) ◽  
pp. 93-100
Author(s):  
A. S. Aloy ◽  
◽  
A. I. Blokhin ◽  
P. A. Blokhin ◽  
N. V. Kovalev ◽  
...  

The article presents computational and analytical studies dealing with radiation characteristics of liquid high-level waste vitrified using borosilicate glass (BSS). To confirm the quality of glass on a time scale of up to 10 4 years and more, computational and experimental studies are performed to identify the dose loads on the BSS from all types of radiation. The paper presents the results of computational studies focused on radionuclide composition and radiation characteristics of a BSS produced during the reprocessing of spent nuclear fuel from VVER-1000 reactors based on a method developed by JSC Radium Institute named after V. G. Khlopin.

2019 ◽  
Vol 98 ◽  
pp. 10005
Author(s):  
Marek Pękala ◽  
Paul Wersin ◽  
Veerle Cloet ◽  
Nikitas Diomidis

Radioactive waste is planned to be disposed in a deep geological repository in the Opalinus Clay (OPA) rock formation in Switzerland. Cu coating of the steel disposal canister is considered as potential a measure to ensure complete waste containment of spent nuclear fuel (SF) and vitrified high-level waste (HLW) or a period of 100,000 years. Sulphide is a potential corroding agent to Cu under reducing redox conditions. Background dissolved sulphide concentrations in pristine OPA are low, likely controlled by equilibrium with pyrite. At such concentrations, sulphide-assisted corrosion of Cu would be negligible. However, the possibility exists that sulphate reducing bacteria (SRB) might thrive at discrete locations of the repository’s near-field. The activity of SRB might then lead to significantly higher dissolved sulphide concentrations. The objective of this work is to employ reactive transport calculations to evaluate sulphide fluxes in the near-field of the SF/HLW repository in the OPA. Cu canister corrosion due to sulphide fluxes is also simplistically evaluated.


2014 ◽  
Vol 94 ◽  
pp. 103-110 ◽  
Author(s):  
Yue Zhou Wei ◽  
Shun Yan Ning ◽  
Qi Long Wang ◽  
Zi Chen ◽  
Yan Wu ◽  
...  

The long-term radiotoxicity of high level liquid waste (HLLW) generated in spent nuclear fuel reprocessing is governed by the content of several long-lived minor actinides (MA) and some specific fission product nuclides. To efficiently separate MA (Am, Cm) and some FPs such as Cs and Sr from the HLLW, we have been studying an advanced aqueous partitioning process, which uses selective adsorption as separation method. In this work, we prepared different types of porous silica-based organic/inorganic adsorbents with fast diffusion kinetics, improved chemical stability and low pressure drop in a packed column. So they are advantageously applicable to efficient separation of the MA and specific FP elements from HLLW. Adsorption and separation behaviors of the MA and some FP elements such as Cs and Sr were studied. Small scale separation tests using simulated and genuine nuclear waste solutions were carried out and the obtained results indicate that the proposed separation method based on selective adsorption is essentially feasible.


1986 ◽  
Vol 73 (2) ◽  
pp. 139-139
Author(s):  
Edward J. Hennelly ◽  
E. I. Du Pont de Nemours

2003 ◽  
Vol 807 ◽  
Author(s):  
P. Frugier ◽  
S. Gin ◽  
C. Jégou

ABSTRACTSimplified glass compositions were chosen to improve our knowledge of the alteration kinetics of complex glasses dedicated to the confinement of high-level waste. Since 1998, the sodium borosilicate glass system is at the center of a passionate debate between an affinity-based kinetic rate law and a protective surface layer theory. All the authors who have investigated ternary 68/14/18 SiO2–B2O3–Na2O glass agree on the fact that the affinity law cannot satisfactorily account for its alteration kinetics. Some authors explained that these discrepancies between classical kinetic rate law and experimental findings could be due to macromolecular amorphous separation in the 68/14/18 sodium borosilicate system and that this simplified glass could be divided into 90% reedmergnerite (NaBSi3O8) and 10% diborate (Na2O–2B2O3). This article provides evidence of the homogeneity of ternary 68/18/14 SiO2–B2O3–Na2O glass at nanometric scale and shows that even phase separation at less than nanometric scale could not explain the inability of hydrated glass-solution affinity laws to describe its alteration. The relative simplicity of the SiO2–B2O3–Na2O chemical system allows a critical examination of the macroscopic alteration laws developed over the last twenty years based only on the hydrated glass-solution chemical affinity without taking into account the formation and reactivity of the gel or its passivating properties.


1997 ◽  
Vol 481 ◽  
Author(s):  
S. M. Frank ◽  
K. J. Bateman ◽  
T. DiSanto ◽  
S. G. Johnson ◽  
T. L. Moschetti ◽  
...  

ABSTRACTArgonne National Laboratory has developed a composite ceramic waste form for the disposition of high level radioactive waste produced during electrometallurgical conditioning of spent nuclear fuel. The electrorefiner LiCl/KCl eutectic salt, containing fission products and transuranics in the chloride form, is contacted with a zeolite material which removes the fission products from the salt. After salt contact, the zeolite is mixed with a glass binder. The zeolite/glass mixture is then hot isostatic pressed (HIPed) to produce the composite ceramic waste form. The ceramic waste form provides a durable medium that is well suited to incorporate fission products and transuranics in the chloride form. Presented are preliminary results of the process qualification and characterization studies, which include chemical and physical measurements and product durability testing, of the ceramic waste form.


Author(s):  
J. C. Farmer ◽  
J. J. Haslam ◽  
S. D. Day ◽  
T. Lian ◽  
R. Rebak ◽  
...  

New amorphous-metal thermal-spray coatings have been developed recently that may provide a viable coating option for spent nuclear fuel & high-level waste repositories [Pang et al. 2002; Shinimiya et al. 2005; Ponnambalam et al. 2004; Branagan et al. 2000–2004]. Some Fe-based amorphous-metal formulations have been found to have corrosion resistance comparable to that of high-performance alloys such as Ni-based Alloy C-22 [Farmer et al. 2004–2006]. These materials rely on Cr, Mo and W for enhanced corrosion resistance, while B is added to promote glass formation and Y is added to lower the critical cooling rate (CCR). Materials discussed in this paper include yttrium-containing SAM1651 with CCR ∼ 80 K/s and yttrium-free Formula 2C with CCR ∼ 600 K/s. While nickel-based Alloy C-22 and Type 316L stainless steel lose their resistance to corrosion during thermal spraying, Fe-based SAM1651 and Formula 2C amorphous-metal coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. In the future, such corrosion-resistant thermal-spray coatings may enable the development of less expensive containers for spent nuclear fuel (SNF) and high-level waste (HLW), including enhanced multipurpose containers (MPCs), protected closure welds, and shields to protect containers from drips and falling rocks. These materials are extremely hard and provide enhanced resistance to abrasion and gouges from backfill operations. For example, Type 316L stainless steel has a hardness of approximately 150 VHN, Alloy C-22 has a hardness of approximately 250 VHN, while the Fe-based amorphous metals typically have hardness values of 1100–1300 VHN. Both Formula 2C and SAM1651 have high boron content which allow them to absorb neutrons, and therefore be used for enhanced criticality control. Cost savings can also be realized through the substitution of Fe-based alloy for Ni-based materials. Applications are also envisioned in oil & gas industry.


2002 ◽  
Vol 713 ◽  
Author(s):  
Darren M. Jolley

ABSTRACTRadionuclide adsorption onto microbes, microbial retention in the engineered barrier system (EBS), and their potential release from the EBS as microbial colloids have been investigated. The microbial source term for these calculations was derived using MING V 1.0 software code [1]. Multiple model calculations from MING representing variations in possible microbial communities in the EBS were abstracted into two equations representing one meter segments of potential repository drift containing either commercial spent nuclear fuel (CSNF) or defense high level waste (HLW) packages. These two equations (Equations 1 and 2) represent the average cumulative microbial biomass generated in the EBS at any given time. A distribution for uranium uptake onto microbes (162.88 ± 133.05 mg U/gm dry cell) was applied to the microbial source term. The distribution was derived from the data set in Suzuki and Banfield [2] representing 45 different species of bacteria and fungus, covering uranium uptake at optimum pH values of 1 to 7. The mass of uranium sorbed onto the biomass was either sequestered in the EBS or transported as a microbial colloid based on a regression of data from Jewett et al. [3] representing microbial sorption onto air-water interfaces in unsaturated column experiments. Over one million years, it is estimated that EBS microbes may adsorb from 77 to 2302 kg of uranium [2302 kg U > 100% of the uranium available in a one meter segment of a CSNF waste package] per meter of waste package depending on the saturation of the invert and type of waste package. Over the same time, microbial colloids may transport from 8 to 1250 kg of adsorbed uranium per meter of waste package from the EBS.


1999 ◽  
Vol 556 ◽  
Author(s):  
D. W. Esh ◽  
K. M. Goff ◽  
K. T. Hirsche ◽  
T. J. Battisti ◽  
M. F. Simpson ◽  
...  

AbstractA ceramic waste form is being developed by Argonne National Laboratory* (ANL) as part of the demonstration of the electrometallurgical treatment of spent nuclear fuel [1]. The halide, alkaline earth, alkali, transuranic, and rare earth fission products are stabilized in zeolite which is combined with glass and processed in a hot isostatic press (HIP) to form a ceramic composite. The mineral sodalite is formed in the HIP from the zeolite precursor. The process, from starting materials to final product, is relatively simple. An overview of the processing operations is given. The metrics that have been developed to measure the success or completion of processing operations are developed and discussed. The impact of variability in processing metrics on the durability of the final product is presented. The process is demonstrated to be robust for the type and range of operation metrics considered and the performance metric (PCT durability test) against which the operation metrics are evaluated.


Sign in / Sign up

Export Citation Format

Share Document