scholarly journals ASSESSING THE SUITABILITY OF TIGER NUT FIBRE FOR STRUCTURAL APPLICATIONS

2020 ◽  
Vol 3 (01) ◽  
pp. 32-38
Author(s):  
Uduakobong Okorie ◽  
Ubong Robert ◽  
Ubong Iboh ◽  
Grace Umoren ◽  
Grace Umoren

In this work, the properties of the composite produced from waste carton with various tiger nut fibre contents having cassava starch slurry as binder were investigated. The results obtained showed the ranges of the mean thermal conductivity, bulk density, specific heat capacity, thermal diffusivity, thermal absorptivity, nailability, flexural strength  and compressive strength values to be (0.0447 – 0.0603) Wm-1K-1, (683.62 – 746.32) kgm-3, (1439.811 – 1840.554) J/kg/K, (5.612 - 3.553) 10-8 m2s-1, (25.456 – 31.993) m-1, (23.9 – 100)%, (1.58 – 1.86) MPa and (2.16 – 2.78) MPa respectively between  8.3% and 43.1% of the fibre content.  It was generally observed that with a choice variation in the fibre content, the performance of the developed board can be optimized for structural applications. Hence, instead of discarding the fibre as waste, recycling it can help to provide raw material for the production of cost effective and environmentally friendly materials. This will in turn reduce health risk caused by environmental pollution due to improper waste disposal practice of such material.

Author(s):  
Edgars Kirilovs ◽  
Silvija Kukle ◽  
Dana Beļakova ◽  
Anatolijs Borodiņecs ◽  
Ādolfs Ruciņš ◽  
...  

<p class="R-AbstractKeywords"><span lang="EN-US">Energy and raw material costs, an increase in environmental pollution, greenhouse gas emissions, global warming, depletion of fossil raw materials stimulate to seek and study alternatives to the synthetic fibers and products made of them for full or partial replacement. Renewable raw materials, including natural fiber sources, are the future of storage resources with a variety of positive effects on both the planet ecosystem and the living and working environment, and the energy consumption of delivering the required functionality. One of the most important energy-saving types is to reduce energy consumption in buildings by insulating them.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">For Latvian conditions suitable crops are historically grown flax and hemp. Within the framework of the studies, hemp stems are being used. Hemp compared with flax, are less suffering from diseases and less damaged by pests, so hemp cultivation is practically free from use of chemical pesticides and herbicides reducing the risk to the ecosystem.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">One of the most frequently mentioned industrial hemp raw materials positive qualities are their very wide use, practically all plant parts can be used in production of different products. This work explores the possibilities and technologies within the Latvian grown hemp stems to work into board materials with insulation capability.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">Hemp fibers/shives mix boards can fulfill the main function of insulation materials, i.e., to reduce the transmission of heat, because they have a porous structure and low density. Material thermal insulation properties affect physical and structural properties of compounds. Cost effective particles board samples from chopped hemp stems with three types of adhesives and different thicknesses were produced and their thermal conductivity evaluated. The technologies applied and test results will be discussed in the paper. </span></p>


2019 ◽  
Vol 100 ◽  
pp. 00039 ◽  
Author(s):  
Viktor Koval ◽  
Inesa Mikhno ◽  
Gabriela Hajduga ◽  
Krzysztof Gaska

The issue of waste accumulation has become one of the global problems of humanity. In Ukraine, the main method of waste management is landfill depositing, which is unproductive and affects the ecosystem negatively. However, large landfill sites should be used to produce biogas, thereby reducing the environmental burden and the earned revenue should be used to introduce recycling and a gradual transition to a European waste management policy. The aim of our study was to investigate the state of waste recycling and the possibility of using waste landfills and food with lost consumptive qualities for biogas generation. To analyze the economic efficiency of the installation of biogas equipment in landfills and to investigate the current state of waste management in Ukraine. The research demonstrates that at present in Ukraine the problem of waste accumulation becomes actual. At the same time, the number of large waste landfills is increasing. It is proved that at landfills with an area of more than 50 hectares, the installation of biogas equipment is cost-effective, and the raw material can be distributed at the feed-in tariff, thus solving the energy problem.


2017 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Sunday Etuk ◽  
Okechukwu Agbasi ◽  
Zaidoon Abdulrazzaq ◽  
Ubong Robert

Thermo physical properties of Alates (Swarmers) termite wing has been investigated. The result of our investigation shows the values of thermo physical parameters of the sample materials as 0.0403Wm-1K-1 being the mean thermal conductivity value, bulk density of 188. 8kgm-3 and thermal diffusively value being 8.2485 x 10-8m2s-1. The values are within the values for commonly used insulating materials. Comparing the rate of cooling as well as heat absorption into the material as lagging material with the performance of fiberglass and cork, Alate's wing is adjudged to be a potential insulating raw material.


2016 ◽  
Vol 9 (1) ◽  
pp. 80-95
Author(s):  
Agus Sudibyo ◽  
Sardjono Sardjono

Crude palm oil (CPO)is the richest natural plant source of carotenoids in terms of retinol (pro-vitamin A) equivalent, whereas palm oil mill effluent (POME) is generated from palm oil industry that contains oil and carotenes that used to be treated before discharge. Carotenoids are importance in animals and humans for the purpose of the enhancement of immune response, conversion of vitamin A and scavenging of oxygen radicals. This component has different nutritional  functions and benefits to humaan health. The growing interest in the other natural sources of beta-carotene and growing awareness to prevent pollution has stimulated the industrial use of CPO and POME as a raw material for carotenoids extraction. Various technologies of extraction and separation have been developed in order to recover of carotenoids.This article reports on various technologies that have been developed in order to recover of carotenoids from being destroyed in commercial refining of palm oil and effects of some various treatments on the extraction end separation for carotenoid from palm oil and carotenoids concentration. Principally, there are different technologies, and there is one some future which is the use of solvent. Solvent plays important role  in the most technologiest, however the problem of solvents which are used is that they posses potentiaal fire health and environmental hazards. Hence selection of the  most safe, environmentally friendly and cost effective solvent is important to design of alternative extraction methods.Chemical molecular product design is one of the methods that are becoming more popular nowadays for finding solvent with the desired properties prior to experimental testing.ABSTRAKMinyak sawit kasar merupakan sumber karotenoid terkaya yang berasal dari tanaman sawit sebagai senyawa yang sama dengan retinol atau pro-vitamin A; sedangkan limbah pengolahan minyak sawit dihasilkan dari industri pengolahan minyak sawit yang berisi minyak dan karotene yang perlu diberi perlakuan terlebih dahulu sebelum dibuang. Karotenoid merupakan bahan penting yang diperlukan pada hewan dan manusia guna memperkuat tanggapan terhadap kekebalan, konversi ke vitamin A dan penangkapan gugus oksigen radikal. Dengan berkembangnya ketertarikan dalam mencari beta-karotene yang bersumber dari alam lain dan meningkatnya kesadaran untuk mencegah adanya pencemaran lingkungan, maka mendorong suatu industri untuk menggunakan CPO dan POME sebagai bahan baku untuk diekstrak karotenoidnya. Berbagai macam teknologi guna mengekstrak dan memisahkan karotenoid telah dikembangkan untuk mendapatkan kembali karotenoidnya. Makalah ini melaporkan dan membahas berbagai jenis teknologi yang telah dikembangkan guna mendapatkan kembali senyawa karotenoid dari kerusakan di dalam proses pemurnian minyak sawit secara komersial dan pengaruh beberapa perlakuan terhadap ekstrasi dan pemisahan karotenoid dari minyak sawit dan konsentrasi karotenoidnya. Pada prinsipnya, berbagai teknologi yang digunakan untuk mengekstrak dan memisahkan karotenoid terdapat perbedaan, dan terdapat salah satu teknologi yang digunakan untuk esktrasi dan pemisahan karotenoid adalah menggunakan bahan pelarut. Pelarut yang digunakan mempunyai peranan yang penting dalam teknologi ekstrasi; namun pelarut yang digunakan untuk mengekstrak tersebut mempunyai persoalan karena berpotensi mengganggu kesehatan dan membahayakan cemaran lingkungan. Oleh karena itu, pemilihan jenis teknologi yang aman, ramah terhadap lingkungan dan biaya yang efektif untuk penggunaan pelarut merupakan hal penting sebelum dilakukan desain metode/teknologi alternatif untuk esktrasi karotenoid. Pola produk molekuler kimia merupakan salah satu metode yang saat ini menjadi lebih populer untuk mencari pelarut dengan sifat-sifat yang dikehendaki sebelum diujicobakan. Kata kunci :    karotenoid, ekstrasi, pemisahan, teknologi, minyak sawit kasar, limbah industri pengolahan sawit.


Alloy Digest ◽  
2018 ◽  
Vol 67 (9) ◽  

Abstract Ferrium M54 was designed to create a cost-effective, ultra high-strength, high-fracture toughness material with a high resistance to stress-corrosion cracking for use in structural applications. This datasheet provides information on composition, hardness, and tensile properties as well asfatigue. Filing Code: SA-822. Producer or source: QuesTek Innovations, LLC.


2018 ◽  
Vol 27 (4) ◽  
pp. 096369351802700 ◽  
Author(s):  
Mehmet Önal ◽  
Gökdeniz Neşer

Glass reinforced polyester (GRP), as a thermoset polymer composites, dominates boat building industry with its several advantages such as high strength/weight ratio, cohesiveness, good resistance to environment. However, proper recovering and recycling of GRP boats is became a current environmental requirement that should be met by the related industry. In this study, to propose in a cost effective and environmentally friendly way, Life Cycle Assessment (LCA) has been carried out for six scenarios include two moulding methods (namely Hand Lay-up Method, HLM and Vacuum Infusion Method, VIM) and three End-of-Life (EoL) alternatives(namely Extruding, Incineration and Landfill) for a recreational boat's GRP hulls. A case study from raw materials purchasing phase to disposal/recycling stages has been established taking 11 m length GRP boat hull as the functional unit. Analysis show that in the production phase, the impacts are mainly due to the use of energy (electricity), transport and raw material manufacture. Largest differences between the methods considered (HLM and VIM) can be observed in the factors of marine aquatic ecotoxicity and eutrophication while the closest ones are abiotic depletion, ozon layer depletion and photochemical oxidation. The environmental impact of VIM is much higher than HLM due to its higher energy consumption while vacuum infusion method has lower risk than hand lay-up method in terms of occupational health by using less raw material (resin) in a closed mold. In the comparison of the three EoL techniques, the mechanical way of recycling (granule extruding) shows better environmental impacts except terrestrial ecotoxicity, photochemical oxidation and acidification. Among the EoL alternatives, landfill has the highest environmental impacts except ‘global warming potential’ and ‘human toxicity’ which are the highest in extrusion. The main cause of the impacts of landfill is the transportation needs between the EoL boats and the licenced landfill site. Although it has the higher impact on human toxicity, incineration is the second cleaner alternative of EoL techniques considered in this study. In fact that the similar trend has been observed both in production and EoL phases of the boat. It is obvious that using much more renewable energy mix and greener transportation alternative can reduce the overall impact of the all phases considerably.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2217
Author(s):  
Daniela Șova ◽  
Mariana Domnica Stanciu ◽  
Sergiu Valeriu Georgescu

Investigating the large number of various materials now available, some materials scientists promoted a method of combining existing materials with geometric features. By studying natural materials, the performance of simple constituent materials is improved by manipulating their internal geometry; as such, any base material can be used by performing millimeter-scale air channels. The porous structure obtained utilizes the low thermal conductivity of the gas in the pores. At the same time, heat radiation and gas convection is hindered by the solid structure. The solution that was proposed in this research for obtaining a material with porous structure consisted in perforating extruded polystyrene (XPS) panels, as base material. Perforation was performed horizontally and at an angle of 45 degrees related to the face panel. The method is simple and cost-effective. Perforated and simple XPS panels were subjected to three different temperature regimes in order to measure the thermal conductivity. There was an increase in thermal conductivity with the increase in average temperature in all studied cases. The presence of air channels reduced the thermal conductivity of the perforated panels. The reduction was more significant at the panels with inclined channels. The differences between the thermal conductivity of simple XPS and perforated XPS panels are small, but the latter can be improved by increasing the number of channels and the air channels’ diameter. Additionally, the higher the thermal conductivity of the base material, the more significant is the presence of the channels, reducing the effective thermal conductivity. A base material with low emissivity may also reduce the thermal conductivity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1982
Author(s):  
Paul Desmarchelier ◽  
Alice Carré ◽  
Konstantinos Termentzidis ◽  
Anne Tanguy

In this article, the effect on the vibrational and thermal properties of gradually interconnected nanoinclusions embedded in an amorphous silicon matrix is studied using molecular dynamics simulations. The nanoinclusion arrangement ranges from an aligned sphere array to an interconnected mesh of nanowires. Wave-packet simulations scanning different polarizations and frequencies reveal that the interconnection of the nanoinclusions at constant volume fraction induces a strong increase of the mean free path of high frequency phonons, but does not affect the energy diffusivity. The mean free path and energy diffusivity are then used to estimate the thermal conductivity, showing an enhancement of the effective thermal conductivity due to the existence of crystalline structural interconnections. This enhancement is dominated by the ballistic transport of phonons. Equilibrium molecular dynamics simulations confirm the tendency, although less markedly. This leads to the observation that coherent energy propagation with a moderate increase of the thermal conductivity is possible. These findings could be useful for energy harvesting applications, thermal management or for mechanical information processing.


2019 ◽  
Vol 70 (1) ◽  
pp. 26-29 ◽  
Author(s):  
Tinevimbo Shiri ◽  
Angela Loyse ◽  
Lawrence Mwenge ◽  
Tao Chen ◽  
Shabir Lakhi ◽  
...  

Abstract Background Mortality from cryptococcal meningitis remains very high in Africa. In the Advancing Cryptococcal Meningitis Treatment for Africa (ACTA) trial, 2 weeks of fluconazole (FLU) plus flucytosine (5FC) was as effective and less costly than 2 weeks of amphotericin-based regimens. However, many African settings treat with FLU monotherapy, and the cost-effectiveness of adding 5FC to FLU is uncertain. Methods The effectiveness and costs of FLU+5FC were taken from ACTA, which included a costing analysis at the Zambian site. The effectiveness of FLU was derived from cohorts of consecutively enrolled patients, managed in respects other than drug therapy, as were participants in ACTA. FLU costs were derived from costs of FLU+5FC in ACTA, by subtracting 5FC drug and monitoring costs. The cost-effectiveness of FLU+5FC vs FLU alone was measured as the incremental cost-effectiveness ratio (ICER). A probabilistic sensitivity analysis assessed uncertainties and a bivariate deterministic sensitivity analysis examined the impact of varying mortality and 5FC drug costs on the ICER. Results The mean costs per patient were US $847 (95% confidence interval [CI] $776–927) for FLU+5FC, and US $628 (95% CI $557–709) for FLU. The 10-week mortality rate was 35.1% (95% CI 28.9–41.7%) with FLU+5FC and 53.8% (95% CI 43.1–64.1%) with FLU. At the current 5FC price of US $1.30 per 500 mg tablet, the ICER of 5FC+FLU versus FLU alone was US $65 (95% CI $28–208) per life-year saved. Reducing the 5FC cost to between US $0.80 and US $0.40 per 500 mg resulted in an ICER between US $44 and US $28 per life-year saved. Conclusions The addition of 5FC to FLU is cost-effective for cryptococcal meningitis treatment in Africa and, if made available widely, could substantially reduce mortality rates among human immunodeficiency virus–infected persons in Africa.


Sign in / Sign up

Export Citation Format

Share Document