The effects of Heavy Metals on Microbial Biomass of Forest Soil from Tropical Deciduous Forest of Central Ganga Plain

2021 ◽  
Vol 25 (11) ◽  
pp. 34-37
Author(s):  
Anis Naushi ◽  
Ajay Kumar Arya

This investigation was aimed toward assessing the impact of heavy metals on soil microbial cycles. The impacts of lead (Pb) and cadmium (Cd) at various concentrations were researched over a time of about two months. Chloride salts of Pb and Cd were added independently and in blend to soil samples at room temperature (27ºC) in various polythene packs. Samples were taken from the sacks at about fourteen days span and estimations were taken of the microbial biomass carbon (MBC). The outcomes showed that there was a significant reduction in the microbial biomass carbon for all treated soils from the second week to the 6th week. However, on 8th week, increase in microbial biomass carbon was observed. At the 6th week, 2000mgkg-1Pb and 40mgkg-1Cd gave the main reduction (P < 0.05) in microbial biomass carbon of 98%. A critical decrease in biomass carbon in metal contaminated soil demonstrated that this parameter is a decent marker of toxicity of metals on soil microflora.

2019 ◽  
Vol 4 (1) ◽  
pp. 30-32
Author(s):  
Oijagbe IJ ◽  
Abubakar BY ◽  
Edogbanya PRO ◽  
Suleiman MO ◽  
Olorunmola JB

This study was aimed at evaluating the effect of heavy metals on soil microbial processes. The effects of Lead (Pb) and Cadmium (Cd) at different concentrations were investigated over a period of eight weeks. Chloride salts of Pb and Cd were added singly and in combination to soil samples at room temperature (270C) in different polythene bags. Samples were taken from the bags at two weeks interval and measurements were taken of the microbial biomass carbon (MBC). The results showed that there was a significant decrease in the microbial biomass carbon for all treated soils from the second week to the sixth week. But there was an observed increase in microbial biomass carbon on the eight week. At the sixth week, 2000mgkg-1Pb and 40mgkg-1Cd gave the most significant decrease (P < 0.05) in microbial biomass carbon of 98%.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Devanshi Singh ◽  
Priyanka Sharma ◽  
Ujjwal Kumar ◽  
Achlesh Daverey ◽  
Kusum Arunachalam

Abstract Background Forest fire incidences in the Himalayan region of Uttarakhand, India are very common in summers. Pine and oak are the principal and dominant species of Himalayan subtropical forest and Himalayan temperate forest, respectively. Forest vegetation influences the physicochemical and biological properties of soil and forest fire in pine and oak forests may have a different effect on the physicochemical and biological properties of soil. Therefore, the present study was carried out to assess the impact of forest fire on soil microbial properties, enzymatic activity, and their relationship with soil physicochemical properties in the advent of forest fire in the pine and oak forests of the Garhwal region of Uttarakhand Himalaya, India. Results The soil microbial biomass carbon and nitrogen, soil basal respiration, and acid phosphatase activity decreased, whereas dehydrogenase activity increased at burnt sites of both forest types. The overall change in soil microbial biomass carbon was 63 and 40% at the burnt oak forest and burnt pine forest, respectively. Dehydrogenase activity and acid phosphatase activity showed a strong positive correlation with soil organic matter (r = 0.8) and microbial indices, respectively. The ratio of soil microbial biomass carbon/nitrogen was reduced at burnt sites of both forest types. Factor analysis results showed that fire had a significant impact on soil characteristics. The soil basal respiration was linked with macro- and micronutrients at burnt sites, whereas at control sites, it was linked with physicochemical properties of soil along with nutrients. Conclusion Forest fire had a significant impact on soil properties of both forest types. The impact of forest fire on soil microbial biomass carbon was stronger in the oak forest than in the pine forest. Forest type influenced soil enzymatic activity at burnt sites. The bacterial community was dominated over fungi in burnt sites of both forests. Soil microbial indices can be used as a selective measure to assess the impact of fire. Furthermore, forest type plays an important role in regulating the impact of forest fire on soil properties.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 508 ◽  
Author(s):  
Zhiwei Ge ◽  
Shuiyuan Fang ◽  
Han Chen ◽  
Rongwei Zhu ◽  
Sili Peng ◽  
...  

Soil resident water-stable macroaggregates (diameter (Ø) > 0.25 mm) play a critical role in organic carbon conservation and fertility. However, limited studies have investigated the direct effects of stand development on soil aggregation and its associated mechanisms. Here, we examined the dynamics of soil organic carbon, water-stable macroaggregates, litterfall production, fine-root (Ø < 1 mm) biomass, and soil microbial biomass carbon with stand development in poplar plantations (Populus deltoides L. ‘35’) in Eastern Coastal China, using an age sequence (i.e., five, nine, and 16 years since plantation establishment). We found that the quantity of water-stable macroaggregates and organic carbon content in topsoil (0–10 cm depth) increased significantly with stand age. With increasing stand age, annual aboveground litterfall production did not differ, while fine-root biomass sampled in June, August, and October increased. Further, microbial biomass carbon in the soil increased in June but decreased when sampled in October. Ridge regression analysis revealed that the weighted percentage of small (0.25 mm ≤ Ø < 2 mm) increased with soil microbial biomass carbon, while that of large aggregates (Ø ≥ 2 mm) increased with fine-root biomass as well as microbial biomass carbon. Our results reveal that soil microbial biomass carbon plays a critical role in the formation of both small and large aggregates, while fine roots enhance the formation of large aggregates.


1996 ◽  
Vol 76 (4) ◽  
pp. 459-467 ◽  
Author(s):  
William R. Horwath ◽  
Eldor A. Paul ◽  
David Harris ◽  
Jeannette Norton ◽  
Leslie Jagger ◽  
...  

Chloroform fumigation-incubation (CFI) has made possible the extensive characterization of soil microbial biomass carbon (C) (MBC). Defining the non-microbial C mineralized in soils following fumigation remains the major limitation of CFI. The mineralization of non-microbial C during CFI was examined by adding 14C-maize to soil before incubation. The decomposition of the 14C-maize during a 10-d incubation after fumigation was 22.5% that in non-fumigated control soils. Re-inoculation of the fumigated soil raised 14C-maize decomposition to 77% that of the unfumigated control. A method was developed which varies the proportion of mineralized C from the unfumigated soil (UFC) that is subtracted in calculating CFI biomasss C. The proportion subtracted (P) varies according to a linear function of the ratio of C mineralized in the fumigated (FC) and unfumigated samples (FC/UFC) with two parameters K1 and K2 (P = K1FC/UFC) + K2). These parameters were estimated by regression of CFI biomass C, calculated according to the equation MBC = (FC − PUFC)/0.41, against that derived by direct microscopy in a series of California soils. Parameter values which gave the best estimate of microscopic biomass from the fumigation data were K1 = 0.29 and K2 = 0.23 (R2 = 0.87). Substituting these parameter values, the equation can be simplified to MBC = 1.73FC − 0.56UFC. The equation was applied to other CFI data to determine its effect on the measurement of MBC. The use of this approach corrected data that were previously difficult to interpret and helped to reveal temporal trends and changes in MBC associated with soil depth. Key words: Chloroform fumigation-incubation, soil microbial biomass, microscopically estimated biomass, carbon, control, 14C


2015 ◽  
Vol 12 (22) ◽  
pp. 6751-6760 ◽  
Author(s):  
Z. H. Zhou ◽  
C. K. Wang

Abstract. Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic) and nitrogen (Nmic) and related parameters from 207 independent studies published up to November 2014 across China's forest ecosystems. Our objectives were to (1) examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates) by climate zones and management regimes for these forests; and (2) identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg−1), Nmic (60.1 mg kg−1, Cmic : Nmic ratio (8.25), Cmic / Csoil rate (1.92 %), and Nmic / Nsoil rate (3.43 %) across China's forests. The natural forests had significantly greater Cmic (514.1 mg kg−1 vs. 281.8 mg kg−1) and Nmic (82.6 mg kg−1 vs. 39.0 mg kg−1) than the planted forests, but had less Cmic : Nmic ratio (7.3 vs. 9.2) and Cmic / Csoil rate (1.7 % vs. 2.1 %). Soil resources and climate together explained 24.4–40.7 % of these variations. The Cmic : Nmic ratio declined slightly with Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plasticity of microbial carbon-nitrogen stoichiometry. The Cmic / Csoil rate decreased with Csoil : Nsoil ratio, whereas the Nmic / Nsoil rate increased with Csoil : Nsoil ratio; the former was influenced more by soil resources than by climate, whereas the latter was influenced more by climate. These results suggest that soil microbial assimilation of carbon and nitrogen are jointly driven by soil resources and climate, but may be regulated by different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document