scholarly journals Effects of Residual Stress and Mechanical Heterogeneity on Brittle Fracture Strength of Welded Joints

1972 ◽  
Vol 1972 (131) ◽  
pp. 355-365 ◽  
Author(s):  
Kunihiko Satoh ◽  
Masao Toyoda
2008 ◽  
Vol 5 (6) ◽  
pp. 101524 ◽  
Author(s):  
Yoichi Yamashita ◽  
Fumiyoshi Minami ◽  
Richard Neu ◽  
Kim Wellin ◽  
Steven R. Thompson ◽  
...  

2021 ◽  
Vol 111 ◽  
pp. 102673
Author(s):  
Liangbi Li ◽  
Jingxi Zhang ◽  
Yiwen Zhang ◽  
Deqin Zhu ◽  
Zhengquan Wan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4145
Author(s):  
He Xue ◽  
Zheng Wang ◽  
Shuai Wang ◽  
Jinxuan He ◽  
Hongliang Yang

Dissimilar metal welded joints (DMWJs) possess significant localized mechanical heterogeneity. Using finite element software ABAQUS with the User-defined Material (UMAT) subroutine, this study proposed a constitutive equation that may be used to express the heterogeneous mechanical properties of the heat-affected and fusion zones at the interfaces in DMWJs. By eliminating sudden stress changes at the material interfaces, the proposed approach provides a more realistic and accurate characterization of the mechanical heterogeneity in the local regions of DMWJs than existing methods. As such, the proposed approach enables the structural integrity of DMWJs to be analyzed in greater detail.


Author(s):  
Dean Deng ◽  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Recent discoveries of stress corrosion cracking (SCC) at nickel-based metals in pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It has been recognized that welding residual stress is an important factor causing the issue of SCC in a weldment. In this study, both numerical simulation technology and experimental method were employed to investigate the characteristics of welding residual stress distribution in several typical welded joints, which are used in nuclear power plants. These joints include a thick plate butt-welded Alloy 600 joint, a dissimilar metal J-groove set-in joint and a dissimilar metal girth-butt joint. First of all, numerical simulation technology was used to predict welding residual stresses in these three joints, and the influence of heat source model on welding residual stress was examined. Meanwhile, the influence of other thermal processes such as cladding, buttering and heat treatment on the final residual stresses in the dissimilar metal girth-butt joint was also clarified. Secondly, we also measured the residual stresses in three corresponding mock-ups. Finally, the comparisons of the simulation results and the measured data have shed light on how to effectively simulate welding residual stress in these typical joints.


Sign in / Sign up

Export Citation Format

Share Document