Numerical Response Analysis of a Large Mat-type Floating Structure in Regular Waves

1997 ◽  
Vol 1997 (181) ◽  
pp. 111-122 ◽  
Author(s):  
Yukitaka Yasuzawa ◽  
Daisuke Kawano ◽  
Koji Kagawa ◽  
Ken-ichi Kitabayashi
1985 ◽  
Vol 1985 (158) ◽  
pp. 214-221
Author(s):  
Koichiro Yoshida ◽  
Hideyuki Suzuki ◽  
Noriaki Oka

Author(s):  
Hiroaki Eto ◽  
Osamu Saijo ◽  
Koichi Maruyoshi

Since Japan is limited in area, the effective ocean space development is very important and urgent subject. Concerning a research and development of effective ocean space utilization, the MEGA-FLOAT was one of the most famous projects in Japan that had the purpose of a floating airport construction, and the numerous R & D were conducted aiming at actual construction and those results were reported in respect of conceptual design, construction method, fluid analysis, structural dynamic analysis, environment issue etc. However, the end was faced without achieving it, it can be said that the effect is large. After the end of that project, the realistic, small or medium size structure began to be paid to attention. As the good example of such a kind floating structure, floating pier and disaster prevention base having an advantage against an earthquake, floating restaurant etc. were constructed shown in Figure 1. In this paper, assuming the small size floating restaurant, the wave response analysis was studied, and the habitability of that structure was evaluated from the response calculation results. Concretely, the floating base part; barge type of the restaurant building was designed by the Class NK (Rules and Guidance for the survey and construction of steel ships, Part Q Steel barges). The calculation model consists of a three-story building and the base, that floating artificial base supporting the building was assumed by the elastic plate structural system, and also that building was of the frame structure system. In order to structural analysis, the restaurant model of two different structural systems was united into one body system. In this paper, it is called the hybrid structural system. Fluid effect was analyzed as the fluid-structural interaction problem. Concretely, the Boundary Integral Equation Method (BIEM) was used here, and the wave response calculation was demonstrated by that forces. The evaluation of habitability of the restaurant in vertical and horizontal motion was examined by the diagram proposed from our research results.


2013 ◽  
Vol 43 ◽  
pp. 112-130 ◽  
Author(s):  
Constantine Michailides ◽  
Eva Loukogeorgaki ◽  
Demos C. Angelides

Author(s):  
Yoshiyasu Watanabe ◽  
Koichiro Yoshida

It is desired instead of welding to develop a mechanical connector, which may work well to connect two units at the site in spite of circumstances of some extent of relative motions between two units caused by waves. One of the authors proposed a new type of mechanical connector, which is based on an idea of three bodies problem instead of usual mechanical connectors (two bodies problem). In this paper, wave exciting tests of a semisubmersible floating structure model with the proposed mechanical connectors of 1/100 scale and the numerical analysis using hydroelastic response analysis program VODAC are carried out and wave response characteristics of the semisubmersible floating structure model with the mechanical connectors and its feasibility are reported.


Author(s):  
Hoi-Sang Chan ◽  
Evren Armaoğlu ◽  
Matthew Thomson ◽  
Alistair Garner

Abstract The extended lift operation to deliver the Wellbay module (M5) combined with the Flare Tower (M8) from the Miller Platform in the North Sea to the shore using the Semi-Submersible Crane Vessel S7000 was restricted by the clearances between M5/M8 and the vessel crane booms. A method to calculate the clearances of the M5/M8 normal to the vessel crane booms has been developed and used in a frequency-domain response analysis to define operability limits. Investigations based on a series of scale model tests in regular waves and irregular short-crested waves including motion decay tests in calm water, conducted by the Maritime Research Institute (MARIN) in the Netherlands, were also made to further evaluate the behaviour of the suspended M5/M8 on S7000’s main hooks during transit. The time series of decay motions of the suspended M5/M8 obtained from the decay motion tests and a time domain analysis are compared and used to derive rigging damping. The numerical results of the frequency-domain analysis are validated with the experimental data for response amplitude operators (RAOs) found in regular waves and pink noise waves, significant and 3 hour most probable maximum/minimum (MPM) responses of interest in irregular waves.


Sign in / Sign up

Export Citation Format

Share Document