Mitochondrial disorders, MRI of the brain and limb muscles in type 1 myotonic dystrophy

Author(s):  
М.С. Бунак ◽  
С.В. Котов ◽  
И.А. Василенко ◽  
О.П. Сидорова ◽  
Е.В. Бородатая ◽  
...  

При миотонической дистрофии выявлены митохондриальные нарушения, которые могут быть причиной поражения белого вещества головного мозга. При МРТ мышц конечностей у больных выявлено наиболее частое поражение - медиальная головка икроножной мышцы. In patients with myotonic dystrophy, mitochondrial disorders were detected, which could be the cause of lesions of the white matter of the brain. MRI of limb muscles in patients revealed the most frequent lesion of the medial head of the calf muscle.

2019 ◽  
Author(s):  
Masamitsu Nishi ◽  
Takashi Kimura ◽  
Mitsuru Furuta ◽  
Koichi Suenaga ◽  
Tsuyoshi Matsumura ◽  
...  

AbstractMyotonic dystrophy type 1 (DM1) is a multi-system disorder caused by CTG repeats in the myotonic dystrophy protein kinase (DMPK) gene. This leads to sequestration of the splicing factor, muscleblind-like 2 (MBNL2), and aberrant splicing, mainly in the central nervous system. We investigated the splicing patterns of MBNL1/2 and genes controlled by MBNL2 in several regions of the brain and between the grey matter (GM) and white matter (WM) in DM1 patients using RT-PCR. Compared with the control, the percentage of spliced-in parameter (PSI) for most of the examined exons were significantly altered in most of the brain regions of DM1 patients, except for the cerebellum. The splicing of many genes was differently regulated between the GM and WM in both DM1 and control. The level of change in PSI between DM1 and control was higher in the GM than in the WM. The differences in alternative splicing between the GM and WM may be related to the effect of DM1 on the WM of the brain. We hypothesize that in DM1, aberrantly spliced isoforms in the neuronal cell body of the GM may not be transported to the axon. This might affect the WM as a consequence of Wallerian degeneration secondary to cell body damage. Our findings may have implications for analysis of the pathological mechanisms and exploring potential therapeutic targets.


Neurology ◽  
2017 ◽  
Vol 89 (9) ◽  
pp. 960-969 ◽  
Author(s):  
Kees Okkersen ◽  
Darren G. Monckton ◽  
Nhu Le ◽  
Anil M. Tuladhar ◽  
Joost Raaphorst ◽  
...  

Objective:To systematically review brain imaging studies in myotonic dystrophy type 1 (DM1).Methods:We searched Embase (index period 1974–2016) and MEDLINE (index period 1946–2016) for studies in patients with DM1 using MRI, magnetic resonance spectroscopy (MRS), functional MRI (fMRI), CT, ultrasound, PET, or SPECT. From 81 studies, we extracted clinical characteristics, primary outcomes, clinical-genetic correlations, and information on potential risk of bias. Results were summarized and pooled prevalence of imaging abnormalities was calculated, where possible.Results:In DM1, various imaging changes are widely dispersed throughout the brain, with apparently little anatomical specificity. We found general atrophy and widespread gray matter volume reductions in all 4 cortical lobes, the basal ganglia, and cerebellum. The pooled prevalence of white matter hyperintensities is 70% (95% CI 64–77), compared with 6% (95% CI 3–12) in unaffected controls. DTI shows increased mean diffusivity in all 4 lobes and reduced fractional anisotropy in virtually all major association, projection, and commissural white matter tracts. Functional studies demonstrate reduced glucose uptake and cerebral perfusion in frontal, parietal, and temporal lobes, and abnormal fMRI connectivity patterns that correlate with personality traits. There is significant between-study heterogeneity in terms of imaging methods, which together with the established clinical variability of DM1 may explain divergent results. Longitudinal studies are remarkably scarce.Conclusions:DM1 brains show widespread white and gray matter involvement throughout the brain, which is supported by abnormal resting-state network, PET/SPECT, and MRS parameters. Longitudinal studies evaluating spatiotemporal imaging changes are essential.


2019 ◽  
Vol 21 ◽  
pp. 101615 ◽  
Author(s):  
Maud van Dorst ◽  
Kees Okkersen ◽  
Roy P.C. Kessels ◽  
Frederick J.A. Meijer ◽  
Darren G. Monckton ◽  
...  

2010 ◽  
Vol 43 (6) ◽  
pp. 149-156 ◽  
Author(s):  
Kyoko Itoh ◽  
Maki Mitani ◽  
Kunihiko Kawamoto ◽  
Naonobu Futamura ◽  
Itaru Funakawa ◽  
...  

2016 ◽  
Vol 41 (5-6) ◽  
pp. 313-321 ◽  
Author(s):  
Inés González-Suárez ◽  
Javier Arpa ◽  
Juan José Ríos-Blanco

Objective: Endothelial dysfunction is associated with arterial stiffness, a factor that is increasingly recognised as an important determinant of cardiovascular risk. High-flow organs such as the brain and kidneys are particularly sensitive to excessive pressure and flow pulsatility. High, local blood flow is associated with low microvascular impedance, which facilitates the penetration of excessive pulsatile energy into the microvascular bed leading to tissue damage. Systemic endothelial dysfunction and arterial stiffness have been demonstrated in peripheral vessels in associated vasculitis (AAV). Although, the brain involvement is not infrequent in AAV, it has not been evaluated previously. Our aim is to evaluate the involvement of the brain microvasculature in AAV. Methods: Twenty-three patients with inactive AAV were studied. Brain blood flow was assessed by transcranial Doppler (TCD) and single-photon positron emission tomography (SPECT), structural brain involvement by brain MRI and cognitive scores by Montreal Cognitive Assessment (MoCA) test. Results: Lower mean flow velocity (MFV) was associated to altered SPECT perfusion, higher white matter changes (WMC), lower MoCA scores and younger age (p < 0.05). Middle cerebral artery pulsatility index (MCA-PI) was related to hypertension, diabetes, lower scores on MoCA, increased vasculitis damage index (VDI) and perfusion impairment in SPECT (p < 0.05). These data were reproduced for all intracranial arteries. Up to 88.9% of patients had WMC on MRI. A higher lesion load was associated with age, decreased MoCA and fewer MFV with higher PI. The multivariable linear regression analysis showed that the greater the lesion loads, greater the bifrontal atrophy, MCA-PI and lower MoCA scores. Up to 60.9% of patients presented a decreased MoCA score (p = 0.012). It appeared to be related to VDI (p = 0.04), WMC (p = 0.004) and altered SPECT (p = 0.05). Conclusions: The alterations in brain perfusion SPECT, the presence of white matter lesions on MRI, as well as increased PI and RI with lower MFV of the cerebral vessels in TCD suggest the presence of microangiopathy in asymptomatic AAV that could lead to cognitive impairment.


2004 ◽  
Vol 24 (12) ◽  
pp. 1393-1399 ◽  
Author(s):  
Sari Mäkimattila ◽  
Kirsi Malmberg-Cèder ◽  
Anna-Maija Häkkinen ◽  
Kim Vuori ◽  
Oili Salonen ◽  
...  

Microangiopathic end-organ injury is common in type 1 diabetes. However, the pathophysiology of diabetic encephalopathy is poorly understood. The authors studied 10 normotensive patients with type 1 diabetes with retinopathy, autonomic neuropathy, but without nephropathy, and 10 healthy subjects. Proton magnetic resonance spectroscopy was performed at 1.5 T in the frontal cortex, thalamus, and posterior frontal white matter. There was no change in N-acetyl–containing compounds (NA), but choline-containing compounds (Cho) were increased in the white matter and in the thalamus; myo-inositol was increased in the white matter, glucose excess was found in all brain, and water intensity was increased in the cortical voxel in the patients. Calculated lifetime glycemic exposure correlated inversely with Cho and NA in white matter and with Cho in thalamus. Concentrations of soluble intercellular adhesion molecules and vascular cell adhesion molecules were increased in the patients. In conclusion, in patients with type 1 diabetes, the increase in adhesion molecules and an association between altered brain metabolites and glycemic exposure suggest the presence of a vascularly mediated, progressive metabolic disturbance in the brain.


2021 ◽  
Author(s):  
Garazi Labayru ◽  
Borja Camino-Pontes ◽  
Antonio Jimenez-Marin ◽  
Joana Garmendia ◽  
Jorge Villanua ◽  
...  

Abstract Background: Myotonic Dystrophy Type 1 (DM1) is a multisystemic disease that affects gray and white matter (WM) tissues. WM changes in DM1 include increased hyperintensities and altered tract integrity distributed in a widespread manner. However, the precise spatiotemporal changes are yet undetermined. Methods: MRI data were acquired from 8 adult- and late-onset DM1 patients and 10 healthy controls (HC) at two different timepoints over 9.06 years. Fractional anisotropy (FA) variations were assessed with Tract-Based Spatial Statistics. Transversal and longitudinal intra- and intergroup analyses were conducted, along with correlation analyses with clinical and neuropsychological data.Results: At baseline, reduced FA values were found in patients in the uncinate, anterior-thalamic, fronto-occipital, and longitudinal tracts. At follow-up, the WM disconnection was shown to have spread from the frontal part to the rest of the tracts in the brain. Furthermore, WM lesion burden was negatively correlated with FA values, while visuo-construction and intellectual functioning were positively correlated with global and regional FA values at follow-up.Conclusion: DM1 patients showed a pronounced WM integrity loss over time compared to HC, with a neurodegeneration pattern that suggests a progressive anterior-posterior disconnection. The visuo-construction domain stands out as the most sensitive neuropsychological measure for WM microstructural impairment.


Author(s):  
Ghazaleh Jamalipour Soufi ◽  
Siavash Iravan

Pelizaeus-Merzbacher Disease (PMD), as a rare genetically x-linked leukodystrophy, is a disorder of proteolipid protein expression in myelin formation. This disorder is clinically presented by neurodevelopmental delay and abnormal pendular eye movements. The responsible gene for this disorder is the proteolipid protein gene (PLP1). Our case was a oneyear-old boy referred to the radiology department for evaluating the Central Nervous System (CNS) development by brain Magnetic Resonance Imaging (MRI). Clinically, he demonstrated neuro-developmental delay symptoms. The brain MRI results indicated a diffuse lack of normal white matter myelination. This case report should be considered about the possibilityof PMD in the brain MRI of patients who present a diffuse arrest of normal white matter myelination.


Sign in / Sign up

Export Citation Format

Share Document