Ecological overlap and horizontal gene transfer in clinical Staphylococcus aureus and Staphylococcus epidermidis

Author(s):  
Guillaume Meric
2015 ◽  
Vol 7 (5) ◽  
pp. 1313-1328 ◽  
Author(s):  
Guillaume Méric ◽  
Maria Miragaia ◽  
Mark de Been ◽  
Koji Yahara ◽  
Ben Pascoe ◽  
...  

mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Volker Winstel ◽  
Patricia Sanchez-Carballo ◽  
Otto Holst ◽  
Guoqing Xia ◽  
Andreas Peschel

ABSTRACT The major clonal lineages of the human pathogen Staphylococcus aureus produce cell wall-anchored anionic poly-ribitol-phosphate (RboP) wall teichoic acids (WTA) substituted with d-Alanine and N-acetyl-d-glucosamine. The phylogenetically isolated S. aureus ST395 lineage has recently been found to produce a unique poly-glycerol-phosphate (GroP) WTA glycosylated with N-acetyl-d-galactosamine (GalNAc). ST395 clones bear putative WTA biosynthesis genes on a novel genetic element probably acquired from coagulase-negative staphylococci (CoNS). We elucidated the ST395 WTA biosynthesis pathway and identified three novel WTA biosynthetic genes, including those encoding an α-O-GalNAc transferase TagN, a nucleotide sugar epimerase TagV probably required for generation of the activated sugar donor substrate for TagN, and an unusually short GroP WTA polymerase TagF. By using a panel of mutants derived from ST395, the GalNAc residues carried by GroP WTA were found to be required for infection by the ST395-specific bacteriophage Φ187 and to play a crucial role in horizontal gene transfer of S. aureus pathogenicity islands (SaPIs). Notably, ectopic expression of ST395 WTA biosynthesis genes rendered normal S. aureus susceptible to Φ187 and enabled Φ187-mediated SaPI transfer from ST395 to regular S. aureus. We provide evidence that exchange of WTA genes and their combination in variable, mosaic-like gene clusters have shaped the evolution of staphylococci and their capacities to undergo horizontal gene transfer events. IMPORTANCE The structural highly diverse wall teichoic acids (WTA) are cell wall-anchored glycopolymers produced by most Gram-positive bacteria. While most of the dominant Staphylococcus aureus lineages produce poly-ribitol-phosphate WTA, the recently described ST395 lineage produces a distinct poly-glycerol-phosphate WTA type resembling the WTA backbone of coagulase-negative staphylococci (CoNS). Here, we analyzed the ST395 WTA biosynthesis pathway and found new types of WTA biosynthesis genes along with an evolutionary link between ST395 and CoNS, from which the ST395 WTA genes probably originate. The elucidation of ST395 WTA biosynthesis will help to understand how Gram-positive bacteria produce highly variable WTA types and elucidate functional consequences of WTA variation.


Science ◽  
2008 ◽  
Vol 322 (5909) ◽  
pp. 1843-1845 ◽  
Author(s):  
Luciano A. Marraffini ◽  
Erik J. Sontheimer

Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate ofStaphylococcus epidermidisharbors a CRISPR spacer that matches thenickasegene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation inS. epidermidis. Insertion of a self-splicing intron intonickaseblocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.


2010 ◽  
Vol 107 (26) ◽  
pp. 11954-11958 ◽  
Author(s):  
A. R. Corvaglia ◽  
P. Francois ◽  
D. Hernandez ◽  
K. Perron ◽  
P. Linder ◽  
...  

2018 ◽  
Vol 6 (26) ◽  
Author(s):  
Helen Morcrette ◽  
Marina S. Morgan ◽  
Audrey Farbos ◽  
Paul O’Neill ◽  
Karen Moore ◽  
...  

Here, we present the genome sequence of Staphylococcus aureus Ex1, isolated in 2015 from a patient with spinal osteomyelitis at the Royal Devon and Exeter Hospital in the United Kingdom. The availability of the Ex1 genome sequence provides a resource for studying the basis for spinal infection and horizontal gene transfer in S. aureus.


Author(s):  
Fabio Cafini ◽  
Nguyen Thi Le Thuy ◽  
Federico Román ◽  
José Prieto ◽  
Sarah Dubrac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document