An astonishing simple cerium-based chemosensor for fluorescent selective phosphate detection in aquaeous medium
<div><div><div><p>Phosphate ions are socially important chemicals. They are involved in crucial processes such as for example in medicine or agriculture. However, their sensing with a chemosensor is ardous due to their chemical properties. In this context, a remarkable chemosensor would reveal an outstanding affinity, a high selectivity and a low detection limit in favor of an analyte. This has long been addressed in the past by chemists in synthesizing com- plex chemical architectures as receptors but with questionable successes. Astonishingly, here, for phosphate detection, we address this problem profiting by a simple fluorescent indicator displacement assay (FID) with only commercially available chemicals. We used cerium ammonium nitrate (CAN) combined with a fluorophore to probe phosphate ions in aqueous mediums. The inorganic complex detects phosphate ions in low millimolar concentrations either spectrophotometrically or with the naked-eye with high selectivity and affinity over other anions. To our knowledge, this is the first description of a simple sensitive, selective and high affinity cerium-based chemosensor for the fluorescent selective naked-eye detection of phosphate in aqueous medium. It proved useful for the detection of phosphate in Coca-Cola©.</p></div></div></div>