scholarly journals Chemical insights into the electronic structure of Fe(II) porphyrin using FCIQMC, DMRG, and generalized active spaces

Author(s):  
Oskar Weser ◽  
Leon Freitag ◽  
Kai Guther ◽  
Ali Alavi ◽  
Giovanni Li Manni

<div>Stochastic-CASSCF and DMRG procedures have been utilized to quantify the role of the electron correlation mechanisms that in a Fe-porphyrin model system are responsible for the differential stabilization of the triplet over the quintet state. Orbital entanglement diagrams and CI-coefficients of the wave function in a localised orbital basis allow for an effective interpretation of the role of charge-transfer configurations. A preliminary version of the <i>Stochastic Generalized Active Space Self-Consistent Field</i> method has been developed and is here introduced to further assess the pi-backdonation stabilizing effect.</div><div>By the new method excitations between metal and ligand orbitals can selectively be removed from the complete CI expansion. It is demonstrated that these excitations are key to the differential stabilization of the triplet, effectively leading to a quantitative measure of the correlation enhanced pi-backdonation.</div><div><br></div>

2020 ◽  
Author(s):  
Oskar Weser ◽  
Leon Freitag ◽  
Kai Guther ◽  
Ali Alavi ◽  
Giovanni Li Manni

<div>Stochastic-CASSCF and DMRG procedures have been utilized to quantify the role of the electron correlation mechanisms that in a Fe-porphyrin model system are responsible for the differential stabilization of the triplet over the quintet state. Orbital entanglement diagrams and CI-coefficients of the wave function in a localised orbital basis allow for an effective interpretation of the role of charge-transfer configurations. A preliminary version of the <i>Stochastic Generalized Active Space Self-Consistent Field</i> method has been developed and is here introduced to further assess the pi-backdonation stabilizing effect.</div><div>By the new method excitations between metal and ligand orbitals can selectively be removed from the complete CI expansion. It is demonstrated that these excitations are key to the differential stabilization of the triplet, effectively leading to a quantitative measure of the correlation enhanced pi-backdonation.</div><div><br></div>


Author(s):  
Oskar Weser ◽  
Leon Freitag ◽  
Kai Guther ◽  
Ali Alavi ◽  
Giovanni Li Manni

<div>Stochastic-CASSCF and DMRG procedures have been utilized to quantify the role of the electron correlation mechanisms that in a Fe-porphyrin model system are responsible for the differential stabilization of the triplet over the quintet state. Orbital entanglement diagrams and CI-coefficients of the wave function in a localised orbital basis allow for an effective interpretation of the role of charge-transfer configurations. A preliminary version of the <i>Stochastic Generalized Active Space Self-Consistent Field</i> method has been developed and is here introduced to further assess the pi-backdonation stabilizing effect.</div><div>By the new method excitations between metal and ligand orbitals can selectively be removed from the complete CI expansion. It is demonstrated that these excitations are key to the differential stabilization of the triplet, effectively leading to a quantitative measure of the correlation enhanced pi-backdonation.</div><div><br></div>


2015 ◽  
Vol 17 (18) ◽  
pp. 12356-12364
Author(s):  
Martina Zámečníková ◽  
Dana Nachtigallová

The role of the bridging water molecules has been studied during the excited state photodynamics of a N-methylformamide dimer in complex with water molecules employing the complete active space self-consistent field (CASSCF) and CAS perturbation theory (CASPT2) methods.


1997 ◽  
Vol 11 (32) ◽  
pp. 3733-3750 ◽  
Author(s):  
Akihiro Sano ◽  
Mikio Eto ◽  
Hiroshi Kamimura

In this paper we first describe the multi-configuration self-consistent field method with configuration interaction (MCSCF-CI) which is a variational method most suitable for strongly-correlated cluster systems. Then the calculated results of CuO 6 cluster embedded in hole-doped La 2-x Sr x CuO 4 and of CuO 4 cluster in the electron-doped Nd 2-x Ce x CuO 4 are reviewed. Finally the calculated results on the electronic structure of CuO 5 pyramid embedded in the insulating YBa 2 Cu 3 O 6 and superconducting YBa2Cu3O7 are newly presented. In the latter case we will clarify an important role of the Cu-O chain in the electronic and superconducting state of YBa2Cu3O7 .


1999 ◽  
Vol 576 ◽  
Author(s):  
Anna C. Balazs ◽  
Chandralekha Singh ◽  
Valeriy V. Ginzburg

ABSTRACTWe analyze the thermodynamics of polymer-clay mixtures within the framework of density functional theory (DFT). The interaction potential between clay particles is calculated using the self-consistent field (SCF) method and is strongly dependent on the length and density of grafted short-chain organic modifiers. By combining the DFT and SCF techniques, we determine the role of the grafted chains on the equilibrium phase behavior of the mixtures.


Sign in / Sign up

Export Citation Format

Share Document