scholarly journals Excited State Dynamics of 7-Deazaguanosine and Guanosine 5’ Monophosphate in Aqueous Solution

Author(s):  
Sarah E. Krul ◽  
Sean J. Hoehn ◽  
Karl Feierabend ◽  
Carlos Crespo-Hernández

Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways.<b> </b>In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5’-monophosphate are investigated in aqueous solution using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient absorption spectra are collected under experimental conditions that eliminate the requirement to correct the data for the formation of hydrated electrons, resulting from the two-photon ionization of the solvent. The data is fitted satisfactorily using a two-component sequential kinetic model, yielding lifetimes of 210 ± 50 fs and 1.80 ± 0.02 ps, and 682 ± 40 fs and 1.4 ± 0.03 ps, for 7-deazaguanosine and guanosine 5’-monophosphate, respectively. By analyzing the results from steady-state, time-resolved, and computational calculations, the following relaxation mechanism is proposed for 7-deazaguanosine, S<sub>2</sub>(L<sub>b</sub>) ® S<sub>1</sub>(L<sub>a</sub>) ® S<sub>0</sub>, whereas a S<sub>2</sub>(L<sub>b</sub>) ® S<sub>1</sub>(L<sub>a</sub>) ® S<sub>0</sub>(hot)<sub> </sub>® S<sub>0 </sub>relaxation mechanism<sub> </sub>is proposed for guanosine 5’-monophosphate. Interestingly, longer lifetimes for both the L<sub>b</sub> ® L<sub>a</sub> and the L<sub>a</sub> ® S<sub>0</sub> internal conversion pathways are obtained for 7-deazaguanosine compare to guanosine 5’-monophosphate. Collectively, the results demonstrate that substitution of a single nitrogen for a methine (C-H) group at position seven of the guanine moiety stabilizes the <sup>1</sup>pp* L<sub>b</sub> and L<sub>a</sub> states and alters the topology of their potential energy surfaces in such a way that the population dynamics of both internal conversion pathways in 7-deazaguanosine are significantly slowed down compared to those in guanosine 5’-monophosphate.

2021 ◽  
Author(s):  
Sarah E. Krul ◽  
Sean J. Hoehn ◽  
Karl Feierabend ◽  
Carlos Crespo-Hernández

<p>Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways.<b> </b>In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5’-monophosphate are investigated in aqueous and in a mixture of methanol and water using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient spectra are collected using photon densities that ensure no parasitic multiphoton-induced signal from solvated electrons. The data can be fit satisfactorily using a two- or three-component kinetic model. By analyzing the results from steady-state, time-resolved, computational calculations, and the methanol-water mixture, the following general relaxation mechanism is proposed for both molecules, L<sub>b</sub> ® L<sub>a</sub> ® <sup>1</sup>ps*(ICT) ® S<sub>0</sub>, where the <sup>1</sup>ps*(ICT) stands for an intramolecular charge transfer excited singlet state with significant ps* character. In general, longer lifetimes for internal conversion are obtained for 7-deazaguanosine compared to guanosine 5’-monophosphate. Internal conversion of the <sup>1</sup>ps*(ICT) state to the ground state occurs on a similar time scale of a few picoseconds in both molecules. Collectively, the results demonstrate that substitution of a single nitrogen for a methine (C-H) group at position seven of the guanine moiety stabilizes the <sup>1</sup>pp* L<sub>b</sub> and L<sub>a</sub> states and alter the topology of their potential energy surfaces in such a way that the relaxation dynamics in 7-deazaguanosine are slowed down compared to those in guanosine 5’-monophosphate but not for the internal conversion of <sup>1</sup>ps*(ICT) state to the ground state.</p>


2021 ◽  
Author(s):  
Sarah E. Krul ◽  
Sean J. Hoehn ◽  
Karl Feierabend ◽  
Carlos Crespo-Hernández

<p>Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways.<b> </b>In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5’-monophosphate are investigated in aqueous and in a mixture of methanol and water using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient spectra are collected using photon densities that ensure no parasitic multiphoton-induced signal from solvated electrons. The data can be fit satisfactorily using a two- or three-component kinetic model. By analyzing the results from steady-state, time-resolved, computational calculations, and the methanol-water mixture, the following general relaxation mechanism is proposed for both molecules, L<sub>b</sub> ® L<sub>a</sub> ® <sup>1</sup>ps*(ICT) ® S<sub>0</sub>, where the <sup>1</sup>ps*(ICT) stands for an intramolecular charge transfer excited singlet state with significant ps* character. In general, longer lifetimes for internal conversion are obtained for 7-deazaguanosine compared to guanosine 5’-monophosphate. Internal conversion of the <sup>1</sup>ps*(ICT) state to the ground state occurs on a similar time scale of a few picoseconds in both molecules. Collectively, the results demonstrate that substitution of a single nitrogen for a methine (C-H) group at position seven of the guanine moiety stabilizes the <sup>1</sup>pp* L<sub>b</sub> and L<sub>a</sub> states and alter the topology of their potential energy surfaces in such a way that the relaxation dynamics in 7-deazaguanosine are slowed down compared to those in guanosine 5’-monophosphate but not for the internal conversion of <sup>1</sup>ps*(ICT) state to the ground state.</p>


2019 ◽  
Author(s):  
Matthew M. Brister ◽  
Carlos Crespo-Hernández

<p></p><p> Damage to RNA from ultraviolet radiation induce chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential, but investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5’-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally-excited ground state, a longlived <sup>1</sup>n<sub>O</sub>π* state, and a receiver triplet state within 200 fs. The receiver state internally convert to the long-lived <sup>3</sup>ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.</p><p></p>


RSC Advances ◽  
2014 ◽  
Vol 4 (104) ◽  
pp. 60382-60385 ◽  
Author(s):  
Genbai Chu ◽  
Min Shui ◽  
Ying Xiong ◽  
Jing Yi ◽  
Kemei Cheng ◽  
...  

A study on the dynamics and structures of the excited states of 2,2′,4,4′,6,6′-hexanitrostilbene shows equilibrium between vibrationally hot S1 (S*1) and S1 states with lifetimes of 0.8 and 6 ps, respectively.


2014 ◽  
Vol 16 (36) ◽  
pp. 19556-19563 ◽  
Author(s):  
Falk Renth ◽  
Ron Siewertsen ◽  
Frank Strübe ◽  
Jochen Mattay ◽  
Friedrich Temps

Femtosecond transient absorption spectroscopy of Z-fulgides with selected structural motifs revealed fast and direct excited-state dynamics independent of chemical modifications.


2019 ◽  
Vol 18 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Chikashi Ota ◽  
Keita Sugihara ◽  
Yusuke Kinoshita ◽  
Yuichiro Kashiyama ◽  
Yutaka Nagasawa ◽  
...  

Transient absorption spectroscopy revealed that a catabolite of chlorophyll-a, cPPB-aE, undergoes ultrafast nonradiative decay through an intermediate state.


Sign in / Sign up

Export Citation Format

Share Document