scholarly journals A Cobalt-Iron Double-Atom Catalyst for the Oxygen Evolution Reaction

Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

Single atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in alkaline medium. Here we show that a single atom Co precatalyst can be in-situ transformed into a Co-Fe double atom catalyst for OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the developed of defined and highly active OER catalysts.

2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

Single atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in alkaline medium. Here we show that a single atom Co precatalyst can be in-situ transformed into a Co-Fe double atom catalyst for OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the developed of defined and highly active OER catalysts.


2019 ◽  
Vol 48 (21) ◽  
pp. 7122-7129 ◽  
Author(s):  
Chia-Jui Chang ◽  
You-Chiuan Chu ◽  
Hao-Yu Yan ◽  
Yen-Fa Liao ◽  
Hao Ming Chen

The state-of-art RuO2 catalyst for the oxygen evolution reaction (OER) is measured by using in situ X-ray absorption spectroscopy (XAS) to elucidate the structural transformation during catalyzing the reaction in acidic and alkaline conditions.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaili Zhang ◽  
Xinhui Xia ◽  
Shengjue Deng ◽  
Yu Zhong ◽  
Dong Xie ◽  
...  

Abstract Controllable synthesis of highly active micro/nanostructured metal electrocatalysts for oxygen evolution reaction (OER) is a particularly significant and challenging target. Herein, we report a 3D porous sponge-like Ni material, prepared by a facile hydrothermal method and consisting of cross-linked micro/nanofibers, as an integrated binder-free OER electrocatalyst. To further enhance the electrocatalytic performance, an N-doping strategy is applied to obtain N-doped sponge Ni (N-SN) for the first time, via NH3 annealing. Due to the combination of the unique conductive sponge structure and N doping, the as-obtained N-SN material shows improved conductivity and a higher number of active sites, resulting in enhanced OER performance and excellent stability. Remarkably, N-SN exhibits a low overpotential of 365 mV at 100 mA cm−2 and an extremely small Tafel slope of 33 mV dec−1, as well as superior long-term stability, outperforming unmodified sponge Ni. Importantly, the combination of X-ray photoelectron spectroscopy and near-edge X-ray adsorption fine structure analyses shows that γ-NiOOH is the surface-active phase for OER. Therefore, the combination of conductive sponge structure and N-doping modification opens a new avenue for fabricating new types of high-performance electrodes with application in electrochemical energy conversion devices.


2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

The oxygen evolution reaction (OER) is an essential anode reaction for the generation of solar and electric fuels through water splitting or CO2 electroreduction. Mixed metal oxides containing Co, Fe, or Ni prove to be the most promising OER electrocatalysts in alkaline medium. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co, Fe, and Ni-containing double-atom catalysts from their single-atom precursors via in-situ electrochemical transformation. Atomic-resolution microscopy and operando X-ray absorption spectroscopy (XAS) reveal molecule-like bimetallic active sites for these supported catalysts. Based on electrokinetic and XAS data, we propose a complete catalytic cycle for each catalyst. These mechanisms follow a similar O-O bond forming step and all exhibit bimetallic cooperation. However, the mechanisms diverge in the site and source of OH- for O-O bond formation as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts.


2019 ◽  
Vol 55 (53) ◽  
pp. 7687-7690 ◽  
Author(s):  
Can Huang ◽  
Ying Zou ◽  
Ya-Qian Ye ◽  
Ting Ouyang ◽  
Kang Xiao ◽  
...  

The highly active and stable oxygen evolution reaction (OER) performance of Ni–Fe phosphide/metaphosphate (Ni1−xFex-P/PO3) can originate from in situ generated Fe doped γ-NiOOH.


2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

The oxygen evolution reaction (OER) is an essential anode reaction for the generation of solar and electric fuels through water splitting or CO2 electroreduction. Mixed metal oxides containing Co, Fe, or Ni prove to be the most promising OER electrocatalysts in alkaline medium. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co, Fe, and Ni-containing double-atom catalysts from their single-atom precursors via in-situ electrochemical transformation. Atomic-resolution microscopy and operando X-ray absorption spectroscopy (XAS) reveal molecule-like bimetallic active sites for these supported catalysts. Based on electrokinetic and XAS data, we propose a complete catalytic cycle for each catalyst. These mechanisms follow a similar O-O bond forming step and all exhibit bimetallic cooperation. However, the mechanisms diverge in the site and source of OH- for O-O bond formation as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts.


2019 ◽  
Author(s):  
Jingkun Li ◽  
Li Jiao ◽  
Evan Wegener ◽  
Lynne K. LaRochelle Richard ◽  
Ershuai Liu ◽  
...  

<div> <div> <div> <p>Pyrolysis is indispensable for synthesizing highly active Fe-N-C catalysts for the oxygen reduction reaction (ORR) in acid, but how Fe, N, and C precursors transform to ORR-active sites during pyrolysis remains unclear. This knowledge gap ob- scures the connections between the input precursors and output products, clouding the pathway toward Fe-N-C catalyst improve- ment. Herein, we unravel the evolution pathway of precursors to ORR-active catalyst comprised exclusively of single atom Fe1(II)- N4 sites via in-temperature X-ray absorption spectroscopy. The Fe precursor transforms to Fe oxides below 300 °C, and then to tetrahedral Fe1(II)-O4 via a crystal-to-melt-like transformation below 600 °C. The Fe1(II)-O4 releases a single Fe atom that flows into the N-doped carbon defect forming Fe1(II)-N4 above 600 °C. This vapor phase single Fe atom transport mechanism is verified by synthesizing Fe1(II)-N4 sites via “non-contact pyrolysis” wherein the Fe precursor is not in physical contact with the N and C precursors during pyrolysis. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document