Detection With Firefly Algorithm (FA) Based Feature Selection Forautism Spectrum Disorder (ASD) and Machine Learning Classification

2019 ◽  
Vol 7 (5) ◽  
pp. 992-998
Author(s):  
R. Rajeswari ◽  
R.S. Padma Priya
2021 ◽  
Vol 10 (6) ◽  
pp. 3369-3376
Author(s):  
Saima Afrin ◽  
F. M. Javed Mehedi Shamrat ◽  
Tafsirul Islam Nibir ◽  
Mst. Fahmida Muntasim ◽  
Md. Shakil Moharram ◽  
...  

In this contemporary era, the uses of machine learning techniques are increasing rapidly in the field of medical science for detecting various diseases such as liver disease (LD). Around the globe, a large number of people die because of this deadly disease. By diagnosing the disease in a primary stage, early treatment can be helpful to cure the patient. In this research paper, a method is proposed to diagnose the LD using supervised machine learning classification algorithms, namely logistic regression, decision tree, random forest, AdaBoost, KNN, linear discriminant analysis, gradient boosting and support vector machine (SVM). We also deployed a least absolute shrinkage and selection operator (LASSO) feature selection technique on our taken dataset to suggest the most highly correlated attributes of LD. The predictions with 10 fold cross-validation (CV) made by the algorithms are tested in terms of accuracy, sensitivity, precision and f1-score values to forecast the disease. It is observed that the decision tree algorithm has the best performance score where accuracy, precision, sensitivity and f1-score values are 94.295%, 92%, 99% and 96% respectively with the inclusion of LASSO. Furthermore, a comparison with recent studies is shown to prove the significance of the proposed system. 


2022 ◽  
Author(s):  
Sahan M. Vijithananda ◽  
Mohan L. Jayatilake ◽  
Badra Hewavithana ◽  
Teresa Gonçalves ◽  
Luis M. Rato ◽  
...  

Abstract Background: Diffusion-weighted (DW) imaging is a well-recognized magnetic resonance imaging (MRI) technique that is being routinely used in brain examinations in modern clinical radiology practices. This study focuses on extracting demographic and texture features from MRI Apparent Diffusion Coefficient (ADC) images of human brain tumors, identifying the distribution patterns of each feature and applying Machine Learning (ML) techniques to differentiate malignant from benign brain tumors.Methods: This prospective study was carried out using 1599 labeled MRI brain ADC image slices, 995 malignant, 604 benign from 195 patients who were radiologically diagnosed and histopathologically confirmed as brain tumor patients.The demographics, mean pixel values, skewness, kurtosis, features of Grey Level Co-occurrence Matrix (GLCM), mean, variance, energy, entropy, contrast, homogeneity, correlation, prominence and shade, were extracted from MRI ADC images of each patient.At the feature selection phase, the validity of the extracted features were measured using ANOVA f-test. Then, these features were used as input to several Machine Learning classification algorithms and the respective models were assessed.Results: According to the results of ANOVA f-test feature selection process, two attributes: skewness (3.34) and GLCM homogeneity (3.45) scored the lowest ANOVA f-test scores. Therefore both features were excluded in continuation of the experiment. From the different tested ML algorithms, the Random Forest classifier was chosen to build the final ML model since it presented the highest accuracy. The final model was able to predict malignant and benign neoplasms with an 90.41% accuracy after the hyper parameter tuning process.Conclusion: This study concludes that the above mentioned features (except skewness and GLCM homogeneity) are informative to identify and differentiate malignant from benign brain tumors. Moreover, they enable the development of a high-performance ML model that has the ability to assist in the decision-making steps of brain tumor diagnosis process, prior to attempting invasive diagnostic procedures such as brain biopsies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Meijie Liu ◽  
Baojuan Li ◽  
Dewen Hu

Machine learning methods have been frequently applied in the field of cognitive neuroscience in the last decade. A great deal of attention has been attracted to introduce machine learning methods to study the autism spectrum disorder (ASD) in order to find out its neurophysiological underpinnings. In this paper, we presented a comprehensive review about the previous studies since 2011, which applied machine learning methods to analyze the functional magnetic resonance imaging (fMRI) data of autistic individuals and the typical controls (TCs). The all-round process was covered, including feature construction from raw fMRI data, feature selection methods, machine learning methods, factors for high classification accuracy, and critical conclusions. Applying different machine learning methods and fMRI data acquired from different sites, classification accuracies were obtained ranging from 48.3% up to 97%, and informative brain regions and networks were located. Through thorough analysis, high classification accuracies were found to usually occur in the studies which involved task-based fMRI data, single dataset for some selection principle, effective feature selection methods, or advanced machine learning methods. Advanced deep learning together with the multi-site Autism Brain Imaging Data Exchange (ABIDE) dataset became research trends especially in the recent 4 years. In the future, advanced feature selection and machine learning methods combined with multi-site dataset or easily operated task-based fMRI data may appear to have the potentiality to serve as a promising diagnostic tool for ASD.


2020 ◽  
Vol 15 ◽  
Author(s):  
Shivani Aggarwal ◽  
Kavita Pandey

Background: Polycystic ovary syndrome is commonly known as PCOS and it is surprising that it affects up to 18% of women in reproductive age. PCOS is the most usually occurring hormone-related disorder. Some of the symptoms of PCOS are irregular periods, increased facial and body hair growth, attain more weight, darkening of skin, diabetes and trouble conceiving (infertility). It also came into light that patients suffering from PCOS also possess a range of metabolic abnormalities. Due to metabolic abnormalities, some disorder may occur which increase the risk of insulin resistance, type 2 diabetes and impaired glucose tolerance (a sign of prediabetes). Family members of women suffering from PCOS are also at higher hazardous level for developing the same metabolic abnormalities. Obesity and overweight status contribute to insulin resistance in PCOS. Objective: In the modern era, there are several new technologies available to diagnose PCOS and one of them is Machine learning algorithms because they are exposed to new data. These algorithms learn from past experiences to produce reliable and repeatable decisions. In this article, Machine learning algorithms are used to identify the important features to diagnose PCOS. Methods: Several classification algorithms like Support vector machine (SVM), Logistic Regression, Gradient Boosting, Random Forest, Decision Tree and K-Nearest Neighbor (KNN) are uses well organized test datasets for classify huge records. Initially a dataset of 541 instances and 41 attributes has been taken to apply the prediction models and a manual feature selection is done over it. Results: After the feature selection, a set of 12 attributes has been identified which plays a crucial role in diagnosing PCOS. Conclusion: There are several researches progressing in the direction of diagnosing PCOS but till now the relevant features are not identify for the same.


2021 ◽  
Author(s):  
Stephen R Piccolo ◽  
Avery Mecham ◽  
Nathan P Golightly ◽  
Jeremie L Johnson ◽  
Dustin B Miller

By classifying patients into subgroups, clinicians can provide more effective care than using a uniform approach for all patients. Such subgroups might include patients with a particular disease subtype, patients with a good (or poor) prognosis, or patients most (or least) likely to respond to a particular therapy. Diverse types of biomarkers have been proposed for assigning patients to subgroups. For example, DNA variants in tumors show promise as biomarkers; however, tumors exhibit considerable genomic heterogeneity. As an alternative, transcriptomic measurements reflect the downstream effects of genomic and epigenomic variations. However, high-throughput technologies generate thousands of measurements per patient, and complex dependencies exist among genes, so it may be infeasible to classify patients using traditional statistical models. Machine-learning classification algorithms can help with this problem. However, hundreds of classification algorithms exist, and most support diverse hyperparameters, so it is difficult for researchers to know which are optimal for gene-expression biomarkers. We performed a benchmark comparison, applying 50 classification algorithms to 50 gene-expression datasets (143 class variables). We evaluated algorithms that represent diverse machine-learning methodologies and have been implemented in general-purpose, open-source, machine-learning libraries. When available, we combined clinical predictors with gene-expression data. Additionally, we evaluated the effects of performing hyperparameter optimization and feature selection in nested cross-validation folds. Kernel- and ensemble-based algorithms consistently outperformed other types of classification algorithms; however, even the top-performing algorithms performed poorly in some cases. Hyperparameter optimization and feature selection typically improved predictive performance, and univariate feature-selection algorithms outperformed more sophisticated methods. Together, our findings illustrate that algorithm performance varies considerably when other factors are held constant and thus that algorithm selection is a critical step in biomarker studies.


Sign in / Sign up

Export Citation Format

Share Document