Analog To Digital TV Migration In Ghana

2012 ◽  
Vol 1 (4) ◽  
pp. 5-14
Author(s):  
Salifu Abdul-Mumin
Keyword(s):  
Author(s):  
In-Sook Jung

Since the inception of digital terrestrial TV (DTT) in the United Kingdom on September 23, 1998, many countries have developed keen interests in this changing landscape of digital television. Soon after, the U.S. also started DTT on November 1, 1998, and other countries such as Germany, France, Japan, and Korea would join the technological trend. Most countries are scheduling the transition of analog TV into digital TV by around 2010 (Table 1). In the digitalization process, each government has two main concerns; one is about when the conversion from analog to digital TV (DTV) is scheduled, and the other is about how smoothly the schedule is completed. While the U.S. currently set analog switch-off for February 17, 2009, the European Commission has planned that switchover from analog TV should be completed in Member States by 2012. The spectrum plans of Member States in the EU said to be flexible enough to allow the introduction of other electronic communications services, along with DTT (Indepen, Ovum, & Fathom, 2005). According to EU Directive, the UK is planning to finish the switchover in 2012 and Germany in 2010. In Asia, South Korea is expected to be completed in 2010, Japan in 2011, and China in 2015. Unlike government-announced timetables, each country has some difficulties in keeping for the transition process so that the successful conversion within the scheduled timeline may not be possible. Thus, this article first examines which kinds of problems and alternatives are emerging in the policy process for DTV transition in several countries. Secondly, it attempts to find the global implication from what sorts of DTV transition issues are observed in most countries and from how they are broaching the problems of existing regulation systems and the social conflicts among stockholders, especially in Asian countries.


2019 ◽  
Vol 7 (2) ◽  
pp. 138
Author(s):  
P. Nurtrio Harjessi ◽  
Martani Huseini ◽  
Martani Huseini

Television digitization is an internationally agreed consensus. Government readiness is needed to face the changes and technological developments. One perspective that can be used to face television digitalization is by forming a learning organization. Basically, learning organizations formed by the government involving all stakeholders will produce readiness in television digitalization, although challenges and obstacles are often found in the formation of these learning organizations. Constraints faced can be in the form of legal issues in the form of lawsuits and resistance due to lack of learning and the involvement of all parties in technological change. This paper uses the method of analysis of literature studies through books, journals, reports, and publications related to government readiness in facing television digitalization in accordance with the perspective of the learning organization. The results of the analysis indicate that the perspective of the learning organization can be one of the solutions to face television digitalization, such as the formation of a task force that is being carried out by the government by involving all stakeholders as a forum for learning. Besides that the government is trying to prepare its organization to face television digitalization with several efforts such as drafting the government's version of the Broadcasting Law; developing guidelines for digital broadcasting blueprints; establishment of working groups for the preparation of analog to digital TV migration; conducting socialization and promotion; conducting studies on the preparation of digital TV business opportunities to the stipulation of Ministerial Decrees on Digital Broadcast Trials.


Author(s):  
Samira Dias dos Reis

As new technologies continue to emerge, firms in diverse industries increasingly must respond. Future economic rents and competitive advantage rests on the organizational ability to assimilate new technologies in the right manner. Broadcasters, content and service providers, packaging providers, and many other firms have been affected by the advent of digital technologies in the digital television (DTV) industry. All these firms have considered the adoption of digital technologies. Digital television is a new television service representing the most significant development in television technology since the advent of color television in the 1950s (Kruger, 2005). DTV can provide several benefits: sharper pictures, a wider screen, CD-quality sound, better color rendition, integration with Web technologies, increased programming options, easy integration between broadcasting networks and broadband telecommunication networks (e.g., B-ISDN—Integrated Services Digital Network), and other new services currently being developed. The nationwide deployment of digital television is a complex and multifaceted enterprise though. It has a profound impact on the entire TV system: from the offer typologies to the consumption manners. Therefore, a successful deployment requires the development by content providers of compelling digital programming; the delivery of digital signals to consumers by broadcast television stations, as well as cable and satellite television systems; and the widespread purchase and adoption by consumers of digital television equipment (Kruger, 2005). In sum, the advent of the digital television has caused an actual breakthrough innovation on almost all levels of the value chain. Although the adoption of breakthrough innovations is highly risky to pursue, research has shown that firms always follow them (Charitou & Markides, 2003; Ketchen, Snow, & Hoover, 2004). In the case of the television industry, the adoption also happens because the government and the telecommunication regulatory agencies in many countries have foreseen deadlines for the complete transition from analog to digital technologies in this industry. Despite lingering standardization issues, digital transmission is replacing analog transmission in the three major delivery platforms (terrestrial, cable, and direct broadcast satellite [DBS]) (Galperin & Bar, 2002). Therefore, in the future we expect that all firms in this industry will have adopted these digital technologies. Furthermore, this adoption will vary according to both the firm’s activities and the type of breakthrough innovation. This research will present some theoretical arguments to describe the adoption of the digital technology by two different activities in the digital TV industry: TV channels and content providers. These two different types of firms were chosen because the emergence of the digital TV has meant the adoption of different types of breakthrough innovation for each one of them. The next section defines these different types of breakthrough innovation. The two following sections describe the two cases of the adoption of DTV: by TV channel and by content provider. Finally, the last section presents the conclusion and implications of this research.


Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
T. A. Dodson ◽  
E. Völkl ◽  
L. F. Allard ◽  
T. A. Nolan

The process of moving to a fully digital microscopy laboratory requires changes in instrumentation, computing hardware, computing software, data storage systems, and data networks, as well as in the operating procedures of each facility. Moving from analog to digital systems in the microscopy laboratory is similar to the instrumentation projects being undertaken in many scientific labs. A central problem of any of these projects is to create the best combination of hardware and software to effectively control the parameters of data collection and then to actually acquire data from the instrument. This problem is particularly acute for the microscopist who wishes to "digitize" the operation of a transmission or scanning electron microscope. Although the basic physics of each type of instrument and the type of data (images & spectra) generated by each are very similar, each manufacturer approaches automation differently. The communications interfaces vary as well as the command language used to control the instrument.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

One of the major advancements applied to scanning electron microscopy (SEM) during the past 10 years has been the development and application of digital imaging technology. Advancements in technology, notably the availability of less expensive, high-density memory chips and the development of high speed analog-to-digital converters, mass storage and high performance central processing units have fostered this revolution. Today, most modern SEM instruments have digital electronics as a standard feature. These instruments, generally have 8 bit or 256 gray levels with, at least, 512 × 512 pixel density operating at TV rate. In addition, current slow-scan commercial frame-grabber cards, directly applicable to the SEM, can have upwards of 12-14 bit lateral resolution permitting image acquisition at 4096 × 4096 resolution or greater. The two major categories of SEM systems to which digital technology have been applied are:In the analog SEM system the scan generator is normally operated in an analog manner and the image is displayed in an analog or "slow scan" mode.


2011 ◽  
Vol E94-C (10) ◽  
pp. 1698-1701
Author(s):  
Yang SUN ◽  
Chang-Jin JEONG ◽  
In-Young LEE ◽  
Sang-Gug LEE

Sign in / Sign up

Export Citation Format

Share Document